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ABSTRACT. Paper concerns the problem of representing homology classes 
by embedded circles, and the question of existence of circles invariant under 
an isometry of a compact surface. 

If/: R3 —> R3 is an isometry and M C R3 is an embedded compact invari
ant surface, then we can prove that there is always a circle on M which is invari
ant under /. This result follows from Theorem 3 and the fact that any isometry 
of the sphere or torus has an invariant circle. 

Let ƒ: M —> M denote an orientation preserving diffeomorphism of finite 
order on a compact oriented surface, and let P: M —> Mf be the natural projec
tion to the orbit or quotient space AL. We will consider two embedded circles 
to be equivalent if they are isotopic through invariant circles. 

THEOREM 1. Let f: M —+ M where M¥=S2. Then 
(1) There exist an infinite number of distinct homology classes represented 

by an invariant circle iff M^ + S2 or f2 = idM. 
(2) IfMf — S2 and f2 + idM, each invariant circle disconnects M. 

THEOREM 2. There exists an ƒ : M—• M of order 30 on a surface of genus 
11 with the following properties. 

(1) ƒ has no invariant circle. 
(2) Ifg:M —> M has no invariant circles then g is conjugate to f where r 

is relatively prime to 30. 

THEOREM 3. (1) If f: M—* M has order pkql where p and q are primes, 
then f has an invariant circle. 

(2) If the genus of M is less than 11 then every f: M —> M has an invari-
ant circle. 

(3) If f : M —> M is induced by an isometry F: R3 —> R3 then f has at 
least 4 invariant circles when the genus of M is greater than 1. 
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