A TRUNCATION PROCESS FOR REDUCTIVE GROUPS

BY JAMES ARTHUR ${ }^{1}$
Communicated by J. A. Wolf, January 26, 1977

Let G be a reductive group defined over \mathbf{Q}. Index the parabolic subgroups defined over Q, which are standard with respect to a minimal ${ }^{(0)} P$, by a partially ordered set 9 . Let 0 and 1 denote the least and greatest elements of \mathscr{I} respectively, so that ${ }^{(1)} P$ is G itself. Given $u \in \mathscr{G}$, we let ${ }^{(u)} N$ be the unipotent radical of ${ }^{(u)} P,{ }^{(u)} M$ a fixed Levi component, and ${ }^{(u)} A$ the split component of the center of ${ }^{(u)} M$. Following [1, p. 328], we define a map ${ }^{(u)} H$ from ${ }^{(u)} M(\mathrm{~A})$ to ${ }^{(u)} \mathfrak{a}=\operatorname{Hom}\left(X\left({ }^{(u)} M\right)_{\mathbf{Q}}, \mathbf{R}\right)$ by

$$
e^{\langle\chi},^{\left.(u)_{H(m)}\right)}=|\chi(m)|, \quad \chi \in X\left(^{(u)} M\right)_{\mathbf{Q}}, m \in{ }^{(u)} M(\mathbf{A})
$$

If K is a maximal compact subgroup of $G(\mathbf{A})$, defined as in [1, p. 328] , we extend the definition of ${ }^{(u)} H$ to $G(\mathbf{A})$ by setting

$$
{ }^{(u)} H(n m k)={ }^{(u)} H(m), \quad n \in{ }^{(u)} N(\mathbf{A}), m \in{ }^{(u)} M(\mathbf{A}), k \in K .
$$

Identify ${ }^{(0)} \mathfrak{a}$. with its dual space via a fixed positive definite form \langle,$\rangle on { }^{(0)} \mathfrak{a}$ which is invariant under the restricted Weyl group Ω. This embeds any ${ }^{(u)} \mathfrak{a}$ into ${ }^{(0)} \mathfrak{a}$ and allows us to regard ${ }^{(u)} \Phi$, the simple roots of $\left({ }^{(u)} P,{ }^{(u)} A\right)$, as vectors in ${ }^{(0)} a$. If $v \leqslant u,{ }^{(v)} P \cap{ }^{(u)} M$ is a parabolic subgroup of ${ }^{(u)} M$, which we denote by $\binom{v}{(u)} P$ and we use this notation for all the various objects associated with $\binom{v}{u} P$.
 the set of elements $\alpha \in{ }^{(v)} \Phi$ which vanish on ${ }^{(u)} a$.

Let R be the regular representation of $G(\mathbf{A})$ on $L^{2}(Z G(\mathbf{Q}) \backslash G(\mathbf{A}))$, where we write Z for ${ }^{(1)} A(\mathbf{R})^{0}$, the identity component of ${ }^{(1)} A(\mathbf{R})$. Let f be a fixed K conjugation invariant function in $C_{c}^{\infty}(Z \backslash G(\mathrm{~A}))$. Then $R(f)$ is an integral operator whose kernel is

$$
K(x, y)=\sum_{\gamma \in G(Q)} f\left(x^{-1} \gamma y\right)
$$

If $u<1$ and $\lambda \in{ }^{(u)} \mathfrak{a} \otimes \mathbf{C}$, let $\rho(\lambda)$ be the representation of $G(\mathbf{A})$ obtained by inducing the representation
from ${ }^{(u)} P(\mathbf{A})$ to $G(\mathbf{A})$. Here ${ }_{(u)} R_{\text {disc }}$ is the subrepresentation of the representation

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 22E55; Secondary 32N10.
 ${ }^{1}$ Sloan Fellow.

