MARKOV CELL STRUCTURES

BY F. T. FARRELL AND L. E. JONES ${ }^{1}$
Communicated by S. S. Chern, January 15, 1977

ABSTRACT. We show that the partition underlying a Markov partition for a dynamical system can be chosen to be a cell complex structure.

Let M denote a Riemannian manifold of dimension m, Λ a compact subset of M lying in the interior of M, and $h: M \rightarrow M$ a diffeomorphism. Recall that Λ is called a hyperbolic set for h (see [6]) if
(a) $h: \Lambda \longrightarrow \Lambda$ is a homeomorphism;
(b) $\left.T(M)\right|_{\Lambda}$ splits as a direct sum $\xi^{u} \oplus \xi^{s}$ of continuous subbundles;
(c) $D h\left(\xi^{u}\right)=\xi^{u}, D h\left(\xi^{s}\right)=\xi^{s}, D h$ is expansive on ξ^{u} and contractive on ξ^{s}.

If $\Lambda=M$, then $h: M \rightarrow M$ is called an Anosov diffeomorphism. It is well known that the bundles ξ^{u}, ξ^{s} integrate to give transversal foliations W^{u}, W^{s} of M. (See [1].) Locally W^{u}, W^{s} decompose M into a cartesian product $\mathbf{R}^{k} \times \mathbf{R}^{l}$ where k, l are the dimensions of the leaves in W^{u}, W^{s}, and $k+l=m$.

A cell structure for W^{u}, W^{s} consists of a cell structure C for M, such that each cell $\Delta \in C$ splits as a cartesian product of cells $\Delta=\Delta_{u} \times \Delta_{s}$ consistent with the local product structure given M by (W^{u}, W^{s}). We further require that if $\Delta \in C$ then each of $\partial \Delta_{u} \times \partial \Delta_{s}, \Delta_{u} \times \partial \Delta_{s}, \partial \Delta_{u} \times \Delta_{s}$ is a cellular subcomplex of C. Let C^{i}, j denote the subset of M equal the union of open cells

$$
\left\{\Delta \in C \mid \operatorname{dim}\left(\Delta_{u}\right) \leqslant i, \operatorname{dim}\left(\Delta_{s}\right) \geqslant j\right\} .
$$

A Markov cell structure for an Anosov diffeomorphism $h: M \rightarrow M$ consists of a cell structure C for $\left(W_{u}, W_{s}\right)$ satisfying $h^{n}\left(C^{i}, j\right) \subset C^{i}, j$ for all i, j and some positive integer n.

Theorem. There exist Markov cell structures for every Anosov diffeomorphism.

Remarks. (1) A Markov cell structure for $h: M \rightarrow M$ is also a Markov partition for h, but not vice-versa. The partition sets of M underlying a Markov partition of h, as defined in [5], will generally have nonfinitely generated homology groups.
(2) The theorem generalizes to give a Markov cell structure near any hyper-

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 58515.
 ${ }^{1}$ Both authors research were partially supported by grants from the National Science Foundation.

