MARKOV CELL STRUCTURES

BY F. T. FARRELL AND L. E. JONES¹

Communicated by S. S. Chern, January 15, 1977

ABSTRACT. We show that the partition underlying a Markov partition for a dynamical system can be chosen to be a cell complex structure.

Let *M* denote a Riemannian manifold of dimension *m*, Λ a compact subset of *M* lying in the interior of *M*, and *h*: $M \rightarrow M$ a diffeomorphism. Recall that Λ is called a *hyperbolic* set for *h* (see [6]) if

(a) $h: \Lambda \rightarrow \Lambda$ is a homeomorphism;

(b) $T(M)|_{\Lambda}$ splits as a direct sum $\xi^{u} \oplus \xi^{s}$ of continuous subbundles;

(c) $Dh(\xi^{u}) = \xi^{u}$, $Dh(\xi^{s}) = \xi^{s}$, Dh is expansive on ξ^{u} and contractive on ξ^{s} .

If $\Lambda = M$, then $h: M \to M$ is called an Anosov diffeomorphism. It is well known that the bundles ξ^{u}, ξ^{s} integrate to give transversal foliations W^{u}, W^{s} of M. (See [1].) Locally W^{u}, W^{s} decompose M into a cartesian product $\mathbb{R}^{k} \times \mathbb{R}^{l}$ where k, l are the dimensions of the leaves in W^{u}, W^{s} , and k + l = m.

A cell structure for W^u , W^s consists of a cell structure C for M, such that each cell $\Delta \in C$ splits as a cartesian product of cells $\Delta = \Delta_u \times \Delta_s$ consistent with the local product structure given M by (W^u, W^s) . We further require that if $\Delta \in C$ then each of $\partial \Delta_u \times \partial \Delta_s$, $\Delta_u \times \partial \Delta_s$, $\partial \Delta_u \times \Delta_s$ is a cellular subcomplex of C. Let C^i , j denote the subset of M equal the union of open cells

 $\{\Delta \in C | \dim(\Delta_u) \leq i, \dim(\Delta_s) \geq j \}.$

A Markov cell structure for an Anosov diffeomorphism $h: M \to M$ consists of a cell structure C for (W_u, W_s) satisfying $h^n(C^i, j) \subset C^i$, j for all i, j and some positive integer n.

THEOREM. There exist Markov cell structures for every Anosov diffeomorphism.

REMARKS. (1) A Markov cell structure for $h: M \rightarrow M$ is also a Markov partition for h, but not vice-versa. The partition sets of M underlying a Markov partition of h, as defined in [5], will generally have nonfinitely generated homology groups.

(2) The theorem generalizes to give a Markov cell structure near any hyper-

AMS (MOS) subject classifications (1970). Primary 58F15.

¹Both authors research were partially supported by grants from the National Science Foundation. Copyright © 1977, American Mathematical Society