OBSTRUCTION THEORY IN 3-DIMENSIONAL TOPOLOGY: CLASSIFICATION THEOREMS

BY HARRIE HENDRIKS

Communicated by T. A. Chapman, January 24, 1977

We consider the classification up to homotopy of homotopy equivalences of compact 3-manifolds. Given two compact 3-manifolds (with base point and CW-decomposition) (M, m) and (N, n), in [3] we found an algebraic criterion for the existence of a degree 1 map $f: (M, \partial M) \to (N, \partial N)$ extending a given map f^1 defined on the relative 1-skeleton $(M, \partial M)^1$. Here we consider the space $H^1(M, m)$ of degree 1 homotopy equivalences $f: (M, m) \to (M, m)$ such that $f|\partial M = \operatorname{Id}$ and f is homotopic rel $\partial M \cup \{m\}$ to a map coinciding with the identity on $(M, \partial M)^1$. If $\partial M = \emptyset$, it is equivalent to say that f induces the identity automorphism of $\pi_1(M, m)$. (If $\partial M \neq \emptyset$, we assume that $m \in \partial M$.) Important results are the following.

1. Following Waldhausen e.a. [6] a homotopy equivalence of P^2 -irreducible (closed) sufficiently large 3-manifolds is homotopic to a homeomorphism unique up to isotopy. Our result indicates that the exclusion of 2-sided projective planes is necessary. Indeed, suppose M is the connected sum of two nonsimply connected 3-manifolds, then we have

THEOREM ([2]). If M contains 2-sided projective planes, M admits a self homotopy equivalence, in $H^1(M, m)$, which is not homotopic to a homeomorphism rel ∂M .

Recall that all elements of $H^1(M, m)$ are simple homotopy equivalences (in the sense of Whitehead).

On the other hand, let S be an embedded 2-sphere in M with collar $S \times [0, 1]$. Then the *rotation along* S is the homeomorphism in $H^1(M, m)$ defined by the identity outside $S \times [0, 1]$ and by a generator of $\pi_1 SO(3)$ within $S \times [0, 1]$.

THEOREM ([4]). Let M be a 3-manifold which does not contain 2-sided projective planes, then every self homotopy equivalence in $H^1(M, m)$ is homotopic rel $\partial M \cup \{m\}$ to a rotation along a sphere.

2. Let R be the set of 2-spheres S in M such that we can express $M = M_1 \cup M_2$, where $M_1 \cap M_2 = S$, and where $M_1 \cup_S D^3$ is a connected sum of closed manifolds, each either with finite fundamental group whose 2-Sylow

AMS (MOS) subject classifications (1970). Primary 55D10, 55G37, 57A10.