INVERSE SCATTERING FOR THE KLEIN-GORDON EQUATION

BY G. PERLA MENZALA
Communicated by Richard K. Miller, January 26, 1977

In this note we would like to announce recent results concerning the socalled Inverse Scattering problem for the Klein-Gordon equation in three dimensions. Complete proofs of this work will appear in [1].

We consider the Klein-Gordon equation with a linear perturbation, that is

$$
\begin{equation*}
u_{t t}-\Delta u+m^{2} u+q(x) u=0 \tag{1}
\end{equation*}
$$

in $\Omega=\mathbf{R}^{3},-\infty<t<+\infty$. Here the subscripts denote partial derivatives, $m>$ 0 and Δ is the Laplacian operator. The potential $q(x)$ is assumed to be a real valued function in $\mathbf{R}^{\mathbf{3}}$, nonnegative and satisfying certain reasonable conditions at infinity which we will specify later. The initial Cauchy data for (1) at $t=0$ will be assumed to be C^{∞} with compact support. In the space of such solutions of (1) we define the (total) energy of u as

$$
\|u\|_{E}^{2}=\frac{1}{2} \int_{\mathbf{R}^{3}}\left[|\operatorname{grad} u|^{2}+u_{t}^{2}+m^{2} u^{2}+q(x) u^{2}\right] d x
$$

where $|\operatorname{grad} u|^{2}=\Sigma_{j=1}^{3} u_{x_{j}}^{2}$. It is easy to show that $\|u\|_{E}$ is constant i.e. we are dealing with a conservative equation. If we assume (for example) that $q(x) \in$ $L^{1} \cap L^{\infty}\left(\mathbf{R}^{3}\right)$ then it is well known (see for example [3] and [4]) that given a solution u of (1) there then exists a unique pair $u_{ \pm}$of solutions of (1) with $q \equiv$ 0 such that

$$
\left\|u-u_{ \pm}\right\|_{E} \rightarrow 0 \quad \text { as } t \rightarrow \pm \infty .
$$

The operator which relates $u_{-} \rightarrow u_{+}$is called the scattering operator and is denoted by S. One want to know what can be said about $q(x)$ if we know the operator S ? This is a problem of physical relevance (see [5], [6]). If $q(x)$ is spherically symmetric, then there has been considerable research on this problem in the past twenty five years, mainly through the Gelfand-Levitan-Marchenko approach. In dimensions higher than one, very little is known. Here, we announce a "local" uniqueness result concerning the 3-dimensional inverse problem for (1).

Theorem. Let $q_{1}(x)$ and $q_{2}(x)$ be a nonnegative continuous functions which belong to $L^{1} \cap L^{\infty}\left(\mathbf{R}^{3}\right)$. Let $S\left(q_{1}\right)$ and $S\left(q_{2}\right)$ denote the scattering operators associated with $u_{t t}-\Delta u+m^{2} u+q_{1} u=0$ and $v_{t t}-\Delta v+m^{2} v+q_{2} v=0$

[^0]Copyright © 1977, American Mathematical Society

[^0]: AMS (MOS) subject classifications (1970). Primary 35L05, 35P25, 47A40.
 ${ }^{\mathbf{1}}$ This research was supported by FNDCT and CEPG-UDRJ (Brazil).

