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Operator valued generalizations of the integral formula for the classical 
gamma function arise in connection with noncompact semisimple, or reductive, 
Lie groups for which the symmetric space G/K is Hermitian, and they relate to 
various problems in analysis, group representations, and number theory. In 
particular, when the holomorphic discrete series for (7, constructed originally by 
Harish-Chandra [3], is realized in terms of the unbounded form of G/K as a 
Siegel domain, the gamma function plays a decisive role (cf., [1], [2a], [2b], 
[2d], [6a], [6b]). Moreover, the holomorphic discrete series has an analytic 
continuation [7], the full extent of which is controlled by the analytic contin
uation of a normalized version of the gamma function. In general, however, it 
is only when the gamma function is scalar valued, an occurrence which accounts 
for but a small part of the holomorphic discrete series, that the full analytic con* 
tinuation has been determined. In that specialized context, it is known from 
[6b] that Hardy type Hilbert spaces associated to the various boundary compo
nents of G/K appear at the "integer points" in the analytic continuation. 

This note announces rather complete solutions to these problems for the 
conformai group G = (7(2, 2). Specifically, we give the entire analytic contin
uation of the gamma function, the full extent of analytic continuation of the 
holomorphic discrete series, and we introduce some new vector-valued Hardy 
spaces. 

I. The generalized gamma function. Let A = A x A where A = GL(2, C) 
and fix a complete set of irreducible holomorphic finite-dimensional representa
tions X of A such that \(av a2)* = X(flf, #!)• ^et ^ ^e parametrized by a pair 
of highest weights (oy + 2//9 oy), (/ = 1, 2), where a;- and 2lf are integers and 
/;. > 0. Then X = X( • ; ai9 a2, X°) where 

(1) K*v ai) = *toiY*ULa2Y*\%v
 ai) 

with A = det and X° = X°( • ; lv l2) a polynomial representation. Let P be 
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