A GOOD ALGORITHM FOR LEXICOGRAPHICALLY OPTIMAL FLOWS IN MULTI-TERMINAL NETWORKS

BY NIMROD MEGIDDO

Communicated by Alston S. Householder, December 27, 1976

ABSTRACT. Let a network have several sources and sinks. For any flow f let σ^f and τ^f denote the vectors of net flows out of the sources and into the sinks, respectively, arranged in order of increasing magnitude. Our algorithm computes an f for which both σ^f and τ^f are lexicographic maxima. For a network with n nodes this algorithm terminates within $O(n^5)$ operations.

1. The problem. A network (N, c) consists of a set of nodes $N = \{1, \ldots, n\}$ $(n \ge 1)$ and an $n \times n$ nonnegative matrix c of capacities. $S \subseteq N$ is a nonempty set of sources and $T \subseteq N$ $(T \cap S = \emptyset)$ is the set of sinks. A flow f is an $n \times n$ matrix such that $0 \le f_{ij} \le c_{ij}$ $(i, j \in N)$ and $\sum_{j=1}^{n} (f_{ij} - f_{ji}) = 0$ for $i \notin S \cup T$. Denote s = |S|, t = |T|.

Let $\sigma^f[\tau^f]$ denote the s-tuple [t-tuple] of the numbers $\sum_{j=1}^n (f_{ij} - f_{ji})$, $i \in S[\sum_{j=1}^n (f_{ji} - f_{ij}), i \in T]$ arranged in order of increasing magnitude. f is called *optimal* if it maximizes both σ^f and τ^f in the lexicographic orders on R^s and R^t , respectively.

Optimal flows reduce to maximum flows (see [5]) when s = t = 1. Existence of optimal flows is proved in [7]. The goal of this note is to present a good algorithm (in the sense of [2]) for finding an optimal flow.

2. The algorithm. The algorithm has two phases. In Phase I the network is decomposed to two networks, one with a single source and t sinks, and the other with s sources and a single sink. In Phase II optimal flows are found in these two networks.

PHASE I. Find a flow f which maximizes $\sum_{i \in S} \sum_{j=1}^{n} (f_{ij} - f_{ji})$. Any of the following algorithms may be utilized: Karzanov [6] terminates within $O(n^3)$ operations, Dinic [1] and Even and Tarjan [4] $O(n^4)$, and Edmonds and Karp [3] $O(n^5)$. During the computation of f a set X, $S \subset X \subset N \setminus T$, is generated such that for $i \in X$ and $j \notin X$, $f_{ij} = c_{ij}$ and $f_{ji} = 0$. Next, construct the X-condensed and the $(N \setminus X)$ -condensed networks (see [7]).

PHASE II. Find optimal flows in the X-condensed and the $(N\setminus X)$ -condensed networks independently. These two are treated symmetrically and, hence, without loss of generality assume that $S = \{1\}$.

Copyright @ 1977, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 90B10, 90C35; Secondary 05C35, 94A20, 68A10.

Key words and phrases. Optimal flow, multi-terminal network, tree, polynomialtime algorithm.