A CHARACTERIZATION OF HARMONIC IMMERSIONS OF SURFACES

BY TILLA KLOTZ MILNOR

Communicated by J. A. Wolf, January 3, 1977

Let S be an oriented surface with Riemannian metric ds^2 , and M^n a Riemannian manifold of dimension $n \ge 2$. We present here a characterization of harmonic immersions $f: S \longrightarrow M^n$ which sheds some light on their differential geometric properties. While C^{∞} smoothness is assumed throughout, less is needed.

To work on the Riemann surface determined by ds^2 on S, use conformal parameters $z = x_1 + ix_2$ which correspond to ds^2 -isothermal coordinates x_1, x_2 on S. Given any local coordinates on M^n , write $f = (f^{\alpha})$ and $f_i^{\alpha} = \partial f^{\alpha}/\partial x_i$ where i = 1, 2 and $\alpha, \beta, \gamma = 1, 2, ..., n$. An immersion $f: S \longrightarrow M^n$ is harmonic if and only if for each α and for any ds^2 -isothermal coordinates x_1, x_2 on S

$$\partial^2 f^{\alpha} / \partial x_i^2 + \Gamma^{\alpha}_{\beta\gamma} f_i^{\beta} f_i^{\gamma} = 0,$$

where $\Gamma^{\alpha}_{\beta\gamma}$ are the Christoffel symbols for the metric on M^n , and one sums on the indices β , γ and *i*.

To any real quadratic form $X = l_{ij}dx_i dx_j$ on S, associate on R the quadratic differential $\Omega(X, R)$ and the conformal metric $\Gamma(X, R)$ given by $4\Omega(X, R) = (l_{11} - l_{22} - 2il_{12})dz^2$ and $2\Gamma(X, R) = (l_{11} + l_{22})dzd\overline{z}$ respectively. Thus $X = 2 \text{ Re } \Omega + {}^{h}\Gamma$ on R. (See [10].) Call $\Omega(X, R)$ holomorphic if and only if the coefficient of dz^2 is complex analytic in z for every conformal parameter z on R. An immersion $f: S \to M^n$ yields many quadratic forms of interest, among them the induced metric I, and the second fundamental forms II(N) determined by choices of a unit normal vector field N.

DEFINITION. An immersion $f: S \to M^n$ is *R*-minimal if and only if $\Omega(I, R)$ is holomorphic, and $\Gamma(II(N), R) \equiv 0$ for any choice (local or global) of a unit normal vector field N.

An *R*-minimal immersion is *minimal* if and only if *R* is the Riemann surface R_I determined on *S* by I. It is known that a conformal immersion $f: S \rightarrow M^n$ is harmonic if and only if it is minimal. Indeed, this is established in [2] independent of the dimensions of *S* and M^n . By analogy, we have the following

AMS (MOS) subject classifications (1970). Primary 53B25, 53C40.

Copyright © 1977, American Mathematical Society