SECOND ORDER ELLIPTIC EQUATIONS WITH MIXED BOUNDARY CONDITIONS

BY A. J. PRYDE

Communicated by C. Davis, October 27, 1976

We consider the mixed boundary value problem (MBVP) Au = f in Ω , $B^+u = g^+$ in Γ^+ , $u = g^-$ in Γ^- where Ω is a bounded open subset of R^n whose boundary Γ is divided into disjoint open subsets Γ^+ and Γ^- by an (n-2)-dimensional manifold ω in Γ . We assume $A = \sum_{|\alpha| \le 2} a_{\alpha}(x)D^{\alpha}$ is a properly elliptic operator on $\overline{\Omega}$ and $B^+ = \sum_{j=1}^n b_j^+(x)D_j + b_0(x)$ is a normal boundary operator satisfying the complementing condition with respect to A on $\overline{\Gamma^+}$. The coefficients of the operators and Γ^+ , Γ^- and ω are all assumed arbitrarily smooth.

Throughout, s will denote a real number with $s \neq \frac{1}{2} \pmod{1}$. For $G = \mathbb{R}^n$, \mathbb{R}^n_{\pm} , Ω or Γ , the Sobolev spaces $H^s(G)$ are as in Lions-Magenes [1]. Also $H^s(\Gamma^{\pm})$ is the space of restrictions to Γ^{\pm} of distributions in $H^s(\Gamma)$, with the infimum norm, and $H^s_A(\Omega) = \{u \in H^s(\Omega): Au \in L^2(\Omega)\}$ with the graph norm. Let $\gamma_0: H^s_A(\Omega) \longrightarrow H^{s-1/2}(\Gamma)$ be the trace map, $r^{\pm}: H^{s-1/2}(\Gamma) \longrightarrow H^{s-1/2}(\Gamma^{\pm})$ the restriction maps, and $\gamma^- = r^-\gamma_0$. Then $B^+ = r^+B$ for some first-order normal boundary operator B on the whole of Γ .

Consider the maps $(A, \gamma^{-}, B^{+})_{s}$ defined as

$$(A, \gamma^{-}, B^{+}) \colon H^{s}(\Omega) \longrightarrow H^{s-2}(\Omega) \times H^{s-\frac{1}{2}}(\Gamma^{-}) \times H^{s-\frac{3}{2}}(\Gamma^{+}) \quad \text{if } s > 3/2,$$

$$(A, \gamma^{-}, B^{+}) \colon H^{s}_{A}(\Omega) \longrightarrow L^{2}(\Omega) \times H^{s-\frac{1}{2}}(\Gamma^{-}) \times H^{s-\frac{3}{2}}(\Gamma^{+}) \quad \text{if } s < 3/2.$$

These maps are bounded for all s, by the condition of normality for s < 3/2 (see for example [1, §2.8.1]). The MBVP is called *well-posed* if there exists $s \neq \frac{1}{2} \pmod{1}$ for which $(A, \gamma^-, B^+)_s$ is Fredholm. A bounded linear operator between Hilbert spaces is called α -semi-Fredholm (α sF) if it has finite dimensional kernel and closed range, β -semi-Fredholm (β sF) if it has closed range with finite codimension, and Fredholm if it is α sF and β sF.

THEOREM. For each $x \in \omega$ there is an open subset I_x of the reals such that for $s \notin \frac{1}{2} \pmod{1}$, $(A, \gamma^-, B^+)_s$ is Fredholm if and only if $s \in I = \bigcap_{x \in \omega} I_x$. Moreover, I is open and so the MBVP is well-posed if and only if I is non-empty. In fact, for each $x \in \omega$ there is a real number e_x determined algebraically

AMS (MOS) subject classifications (1970). Primary 35J20, 35J25, 47F05.

Key words and phrases. Mixed boundary value problem, properly elliptic operator, Sobolev space, Fredholm operator, well-posed problem, sesquilinear form, spaces with homogeneous norms, Wiener-Hopf operator.

Copyright © 1977, American Mathematical Society