FOURIER ANALYSIS ON COMPACT SYMMETRIC SPACE

BY THOMAS O. SHERMAN
Communicated by R. R. Goldberg, November 5, 1976

1. Let $L \supset K$ be Lie groups with complex Lie algebras \mathfrak{l}_{c} and f_{c}. Assume \boldsymbol{f}_{c} has a linear complement \mathfrak{b} in \mathfrak{l}_{c} which is a subalgebra. For any σ in $\operatorname{LieHom}_{\mathbf{C}}(\mathbf{b}, \mathbf{C})$ there is a unique germ of a C^{ω} function e^{σ} at $s_{0}:=K$ in $S:=$ L / K such that $e^{\sigma}\left(s_{0}\right)=1$ and $x e^{\sigma}=\sigma(x) e^{\sigma}(x$ in $\mathfrak{b})$. Now suppose S is connected, K is compact, and e^{σ} extends to an element of $C^{\omega}(S)$. Then (HarishChandra) $\varphi_{\sigma}(s):=\int_{K} e^{\sigma}(k s) d k$ is a spherical function in the sense that

$$
\int_{K} \varphi_{\sigma}(g k s) d k=\varphi_{\sigma}(g K) \varphi_{\sigma}(s) .
$$

For a Riemannian symmetric space of noncompact type Helgason [1], [2] extended Harish-Chandra's spherical transform theory to a Fourier theory in which functions of the form e^{σ} mimic the role of characters in classical Fourier theory on \mathbf{R}^{n}. Here we report that difficulties inherent in copying these ideas over to compact symmetric space have been overcome, at least for the rank one spaces.
2. Let $S:=U / K$ be symmetric with U compact semisimple. Let G_{c} be a complexification of U and G a noncompact real form of G_{c} such that $K_{0}:=G$ $\cap U$ is open in K, and maximal compact in G. Let $\mathfrak{g}=\mathfrak{f}+\mathfrak{a}+\mathfrak{a}$ be an Iwasawa decomposition and set $\mathfrak{b}:=\mathbf{C}(\mathfrak{a}+\mathfrak{n})$. Then $\boldsymbol{g}_{c}=\mathfrak{f}_{\boldsymbol{c}}+\mathfrak{b}$ as in $\S 1$. Λ will denote the set of those λ in LieHom $\mathbf{C}_{\mathbf{C}}(\mathbf{b}, \mathbf{C})$ such that e^{λ} is in $C^{\omega}(S) . \Lambda \mid i a$ is the set of highest restricted weights of K-spherical representations of U. For λ in Λ let V_{λ} denote the corresponding irreducible U-submodule of $L^{2}(S)$. Then e^{λ} is the highest weight vector in V_{λ}. Define τ in $\operatorname{LieHom}_{C}(\mathfrak{b}, \mathbf{C})$ by $\tau(x):=\operatorname{tr}(\operatorname{ad} x \mid b)$ (x in b). Then τ is in Λ.

Lemma 1. There is a unique maximal connected, open, K-invariant neighborhood S_{0} of s_{0} in S on which $e^{\tau} \neq 0$. Then $e^{\lambda} \neq 0$ on S_{0} for all λ in Λ.

On S_{0} define $e_{*}^{\lambda}:=\left(e^{\lambda+\tau}\right)^{-1} . e_{*}^{\lambda}$ is the inverse transform kernel to e^{λ}. The aforementioned "inherent difficulty" of the subject is the singularity of e_{*}^{λ} off of S_{0}. Let $B:=K / M$ where M is the centralizer of a in K.

Lemma 2. For all $u K$ in S_{0}, s in S, and λ in Λ

