FOURIER ANALYSIS ON COMPACT SYMMETRIC SPACE

BY THOMAS O. SHERMAN

Communicated by R. R. Goldberg, November 5, 1976

1. Let $L \supset K$ be Lie groups with complex Lie algebras l_c and \mathfrak{k}_c . Assume \mathfrak{k}_c has a linear complement \mathfrak{b} in l_c which is a subalgebra. For any σ in LieHom_C(\mathfrak{b} , C) there is a unique germ of a C^{ω} function e^{σ} at $s_0 := K$ in S := L/K such that $e^{\sigma}(s_0) = 1$ and $xe^{\sigma} = \sigma(x)e^{\sigma}$ (x in \mathfrak{b}). Now suppose S is connected, K is compact, and e^{σ} extends to an element of $C^{\omega}(S)$. Then (Harish-Chandra) $\varphi_{\sigma}(s) := \int_K e^{\sigma}(ks) dk$ is a spherical function in the sense that

$$\int_{K} \varphi_{\sigma}(gks) \, dk = \varphi_{\sigma}(gK)\varphi_{\sigma}(s).$$

For a Riemannian symmetric space of noncompact type Helgason [1], [2] extended Harish-Chandra's spherical transform theory to a Fourier theory in which functions of the form e^{σ} mimic the role of characters in classical Fourier theory on \mathbb{R}^n . Here we report that difficulties inherent in copying these ideas over to compact symmetric space have been overcome, at least for the rank one spaces.

2. Let S := U/K be symmetric with U compact semisimple. Let G_c be a complexification of U and G a noncompact real form of G_c such that $K_0 := G \cap U$ is open in K, and maximal compact in G. Let $\mathbf{g} = \mathbf{f} + \mathbf{a} + \mathbf{n}$ be an Iwasawa decomposition and set $\mathbf{b} := \mathbf{C}(\mathbf{a} + \mathbf{n})$. Then $\mathbf{g}_c = \mathbf{f}_c + \mathbf{b}$ as in §1. A will denote the set of those λ in LieHom_C(\mathbf{b} , C) such that e^{λ} is in $C^{\omega}(S)$. Ali \mathbf{a} is the set of highest restricted weights of K-spherical representations of U. For λ in Λ let V_{λ} denote the corresponding irreducible U-submodule of $L^2(S)$. Then e^{λ} is the highest weight vector in V_{λ} . Define τ in LieHom_C(\mathbf{b} , C) by $\tau(x) := \text{tr}(\text{ad } x | \mathbf{b})$ (x in \mathbf{b}). Then τ is in Λ .

LEMMA 1. There is a unique maximal connected, open, K-invariant neighborhood S_0 of s_0 in S on which $e^{\tau} \neq 0$. Then $e^{\lambda} \neq 0$ on S_0 for all λ in Λ .

On S_0 define $e_*^{\lambda} := (e^{\lambda + \tau})^{-1}$. e_*^{λ} is the inverse transform kernel to e^{λ} . The aforementioned "inherent difficulty" of the subject is the singularity of e_*^{λ} off of S_0 . Let B := K/M where M is the centralizer of **a** in K.

LEMMA 2. For all uK in S_0 , s in S, and λ in Λ

AMS (MOS) subject classifications (1970). Primary 43A30, 43A85, 42A76, 22E30. Copyright © 1977, American Mathematical Society