THE MULTIPLICITY PROBLEM FOR 4-DIMENSIONAL SOLVMANIFOLDS

BY R. TOLIMIERI

Communicated by Daniel W. Stroock, January 6, 1977

Let N_3 be the 3-dimensional Heisenberg group whose underlying manifold is \mathbb{R}^3 and whose group multiplication is $(\xi, t)(\eta, z) = (\xi + \eta, t + z + \frac{1}{2}(yu - xv))$ where $\xi = (x, y), \eta = (u, v) \in \mathbb{R}^2$ and $t, z \in \mathbb{R}$. Every $\sigma \in GL_2(\mathbb{R})$ defines an automorphism of N_3 by the rule $\sigma(\xi, t) = (\sigma\xi, \det \sigma \cdot t)$. Let Δ be the subgroup of $GL_2(\mathbb{R})$ which maps the integer lattice Γ of N_3 onto itself. For $\sigma \in$ Δ set $S\sigma = N_3 \stackrel{?}{\not{}} \sigma(t), \Gamma\sigma = \Gamma \stackrel{?}{\not{}} gp(\sigma)$ where $gp(\sigma)$ is the group generated by σ and $\sigma(t)$ is the 1-parameter subgroup through σ . By [2] the analysis of the right regular representation \mathbb{R} of $S\sigma$ on $L^2(\Gamma \circ \backslash S\sigma)$ reduces to an analysis of the unitary operator $T\sigma: F \to F \circ \sigma$ where $F \in L^2(\Gamma \backslash N_3)$. Denote again by \mathbb{R} the right regular representation of N_3 on $L^2(\Gamma \land N_3)$. Then

$$L^2(\Gamma \mathbb{W}_3) = \sum \bigoplus H_n$$

where $F \in H_n$ iff $\mathcal{R}(0, z)F = e^{2\pi i n z}F$. Each H_n is R-invariant, the multiplicity of R restricted to H_n is |n| and $T\sigma H_n = H_n$. We restrict for convenience our attention to $T\sigma$ restricted to H_n , $n \ge 1$. Let L denote the left regular representation of N_3 .

Let $\omega = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Then $T\omega\theta_n = \theta_n$ is the space of *n*-degree "theta functions" in H_n of period *i* (see [1]). Set

$$\begin{split} \psi_1 &= e^{2\pi i z} e^{\pi i x y} \Sigma_{l \in \mathbb{Z}} e^{-\pi (g+l)^2} e^{2\pi i l x}, \\ \psi_2 &= L(1/2, 1/2, 0) \psi_1^2, \\ \psi_3 &= L(1/2, 0, 0) \psi_1 L(0, 1/2, 0) \psi_1 L(1/2, 1/2, 0) \psi_1. \end{split}$$

THEOREM 1. The *n* functions $\psi_1^{n-j}\psi_2^{j/2}$, *j* even, $\psi_1^{n-j}\psi_2^{(j-3)/2}\psi_3$, *j* odd, *j* = 0, 2, ..., *n* define an eigenbasis for θ_n relative to ω . The eigenvalues are the first *n* numbers in the infinite sequence

$$1; -1, i, 1, -i, \ldots, -1, i, 1, -i.$$

From this result, the results on the "diamond group" $S\omega$ can be read off. This case using vastly different techniques appears in [2]. Also, this is equivalent to diagonalizing explicitly the finite Fourier transform

$$\omega^* = \frac{\sqrt{n}}{n} \ (e^{2\pi i (jk/n)}), \qquad 0 \le j, \ k < n.$$

AMS (MOS) subject classifications (1970). Primary 22Exx, 43A80.

Copyright @ 1977, American Mathematical Society