REAL ALGEBRAIC VARIETY STRUCTURES ON P. L. MANIFOLDS

BY SELMAN AKBULUT AND HENRY C. KING¹ Communicated by P. T. Church, October 25, 1976

A closed smooth manifold M^m is said to bound a smooth *spine-manifold* if M bounds a compact smooth manifold W^{m+1} and if there are a finite number of transversally intersecting closed submanifolds $\{M_i\}$ of W such that $W/\bigcup M_i \approx \operatorname{cone}(M)$, where \approx is piecewise differentiable homeomorphism.

DEFINITION. An A_1 -structure on a P. L. manifold M^m is: $M = M_0 \cup \bigcup_i \operatorname{cone}(\Sigma_i) \times N_i$ where M_0 is a codimension zero smooth submanifold of M, $\partial M_0 = \coprod_i \Sigma_i \times N_i$, N_i 's are smooth manifolds and Σ_i 's are exotic spheres bounding smooth spine-manifolds.

 A_1 -structures satisfy regular neighborhood and product structure properties, and there is a classifying space B_{A_1} with inclusions $B_0 \rightarrow B_{A_1} \rightarrow B_{PL}$ (see [3]). This reduces the existence of A_1 -structure on a P. L. manifold to a bundle lifting problem.

THEOREM 1. Any closed A_1 -manifold is P. L. homeomorphic to a real algebraic variety.

COROLLARY 1. All P. L. manifolds of dimension less than 10 are P. L. homeomorphic to real algebraic varieties (also see [1]).

THEOREM 2. If a closed smooth manifold bounds a smooth spine-manifold, then it can be represented as a link of an isolated real algebraic singularity. (Converse of this is the Hironaka's resolution theorem.)

COROLLARY 2. Elements of Γ_8 , $2\Gamma_{10}$, and all exotic spheres which admit fixed point free smooth involutions are links of real algebraic singularities (also see [2]).

A BRIEF SKETCH OF THE PROOFS. Let M be a closed A_1 -manifold. For simplicity assume $M^m = M_0^m \cup \operatorname{cone}(\Sigma^{m-1})$; then there is W^m with closed submanifolds $\{M_i\}$ such that $W/\bigcup M_i \approx \operatorname{cone}(M)$, and $\partial W = \Sigma$. Let $\widetilde{M} = M_0 \cup W$.

By proving a relative version of the Nash-Tognoli approximation theorem we can make the smooth manifold \widetilde{M} a real algebraic variety V, so that the smooth submanifolds $\{M_i\}$ of \widetilde{M} correspond to the subvarieties $\{V_i\}$ of V.

Copyright © 1977, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 26A78; Secondary 57C25. Key words and phrases. Algebraic varieties, exotic spheres.

¹Both authors supported by National Science Foundation grant MPS72-05055 A03.