PARTS OF MEASURES AND INTEGER-VALUED TRANSFORMS

BY LOUIS PIGNO

Communicated by Richard R. Goldberg, September 20, 1976

In this paper G is a compact abelian group with ordered dual Γ . By this we mean there is a nontrivial group homomorphism $\phi: \Gamma \longrightarrow \mathbb{R}$ where \mathbb{R} is the additive group of real numbers. Let M(G) be the usual convolution algebra of finite Borel measures on G and \uparrow the Fourier-Stieltjes transformation.

A measure $\mu \in M(G)$ is said to vanish at infinity in the direction of ϕ if $\{\gamma_n\}_1^\infty \subset \Gamma$ with $\phi(\gamma_n) \longrightarrow \infty \Rightarrow \hat{\mu}(\gamma_n) \longrightarrow 0$. The subspace consisting of all measures whose transforms vanish at infinity in the direction of ϕ will be denoted by $M_{\phi}(G)$.

Let δ_0 be the identity measure in M(G) and for any integer N_i put $\delta_i = N_i \delta_0$. The purpose of this note is to announce the following results which explicate a line of research begun by H. Helson [2] and continued by various authors in [1], [3], [5], [6], and [7].

THEOREM 1. Let $\mu \in M(G)$ such that the convolution product $\prod_{i=1}^{m} (\mu - \delta_i) \in M_{\phi}(G)$. Then μ has a decomposition $\mu = \mu_0 + \mu_{\perp}$ where $\mu_0 \in M_{\phi}(G), \mu_{\perp} \in M_{\phi}^{\perp}(G)$ and $\hat{\mu}_{\perp}(\Gamma) \subset \{N_1, \ldots, N_m\}$. If $\prod_{i=1}^{m} (\mu - \delta_i) \in M_0(G)$ then μ has a decomposition $\mu = \mu_0 + \mu_{\perp}$ where $\mu_0 \in M_0(G), \mu_{\perp} \in M_0^{\perp}(G)$ and $\hat{\mu}_{\perp}(\Gamma) \subset \{N_1, \ldots, N_m\}$. Here $M_0(G)$ is the ideal of measures $\mu \in M(G)$ such that $\hat{\mu} \in C_0(\Gamma)$.

The proof of Theorem 1 is obtained by analyzing μ_{\perp} in M(S) where S is the structure semigroup of M(G).

Assume ϕ is an isomorphism, \mathcal{P} the positive cone and \mathbf{E} a Sidon subset of Γ . For any subset A of Γ put $\mathbf{F}(A) = \{\mu \in M(G): \hat{\mu} \text{ is integer-valued on } A\}$ and $\mathbf{I}(A) = \{\mu \in M(G): \hat{\mu} = 0 \text{ or } 1 \text{ on } A\}$. The following theorem is a consequence of Theorem 1 and is an extension of a result announced by I. Kessler [3]; see also [4, pp. 206-211].

THEOREM 2. If $\mu \in \mathbf{F}(\Gamma \setminus - \mathcal{P} \cup \mathbf{E})$ then there is a $\nu \in \mathbf{F}(\Gamma)$ such that $\hat{\mu} = \hat{\nu}$ off $-\mathcal{P} \cup \mathbf{E}$. In particular, if $\mu \in \mathbf{I}(\Gamma \setminus -\mathcal{P} \cup \mathbf{E})$ then $\nu \in \mathbf{I}(\Gamma)$.

Measures such that $\hat{\mu}(\gamma) = \hat{\mu}^2(\gamma)$ for all $\gamma \in \mathcal{P}$ are called semi-idempotents. A subset \Re of Γ is said to be a weak Rajchman set if supp $\hat{\mu} \subset \Re \Rightarrow \hat{\mu} \in C_0(\Gamma)$. An easy consequence of Theorem 1 is the following result.

AMS (MOS) subject classifications (1970). Primary 43A25.

Copyright © 1977, American Mathematical Society