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1. Stability. Let X D Y be real analytic (or, more generally, closed semi-
analytic) subsets of Rn with dim X < n, and let M C TV be submodules of 
(C°°(Rn))m obtained (as modules of global sections) on tensoring by C°°(Rn) co-
herent real analytic subsheaves M C N of (0(Rn))m, where 0(Rn) denotes the 
sheaf of real analytic functions on Rn. Let M(Yt X) (similarly for N) be the 
space of m-tuples 0 of Taylor fields on X flat on Y such that at each point 

x G X, <t>x is in the formal completion Mx of M at x. Let r: N(Y, Rn) —• 
N(Yy X)/M(Y, X) = P(Yt X) denote the restriction. 

THEOREM 1. There is a continuous E: P(Yf X) —• N(Y, Rn) such that rE 

= 1. 

Theorem 1 is proved using the approach of [1, Chapter 6 ] , where it is 
shown that r: N(Y, Rn) —• N{Yy X) is onto, with modifications as in [5] ; E is 
nonlinear. 

The ideal / of analytic functions vanishing on a real analytic set need not 
be coherent, but using a suitable decomposition of X by (nonclosed) semianalytic 
subsets, on each of which / is globally generated, Theorem 1 can be applied to 
give, with E(Y, X) denoting the space of smooth functions on X flat on Y. 

THEOREM 2. There is a continuous E: E(Y, X) —> E(Y, Rn), a right in

verse for the restriction. 

J. Mather's proof ([2, in particular, p. 283 and following]), can then be 

applied to give 

COROLLARY 1. Infinitesimal stability implies stability for smooth proper 

mappings of X into a manifold. 

2. G-manifolds. Let G be a compact Lie group acting linearly on Rn and 
let 0: Rn —• Rm be a polynomial "Hilbert" map (i.e. <j> induces a mapping from 
the polynomials on Rm onto the G invariant polynomials on Rn). Let X CRn 

be a G invariant analytic set and let CQ (X) denote the space of G invariant 
smooth functions on X. The method of Theorem 1 (see [5] ) gives 

THEOREM 3. There is a continuous E: CQ(X) —• C°°(Rm) such that 

0 * ^ = 1. 
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