AUTOMORPHIC CUSP FORMS CONSTRUCTED FROM THE WEIL REPRESENTATION

BY S. RALLIS AND G. SCHIFFMANN

Communicated by J. A. Wolf, September 10, 1976

We recall the notation and results of [3].

Let **Q** be the rational numbers.

We let L be a Q integral lattice in \mathbb{Q}^k , i.e. $Q(\xi_1, \xi_2) \in \mathbb{Z}$ for all $\xi_1, \xi_2 \in L$. L. Let $L_*(Q)$ be the Q dual of L, i.e. $L_*(Q) = \{\eta \in \mathbb{R}^k \mid Q(\eta, \xi) \in \mathbb{Z}, \forall \xi \in L\}$. Then $L_*(Q)/L$ is a finite Abelian group, and we let N_L be the exponent of $L_*(Q)/L$, i.e. the smallest positive integer x so that $x \cdot \xi \in L$ for all $\xi \in L_*(Q)$. Choosing a Z-basis X_i of L, we let $D_{Q(L)} = \det \{Q(X_i, X_j)\}$. Then the integer $D_{Q(L)}$ is independent of the choice of basis of L.

Then we define

$$\Gamma_L(Q) = \{g \in O(Q) | g(L) = L\}$$

and

$$\Gamma^{L}(Q) = \left\{ \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}, \epsilon \right) \middle| a, b, c, d \in \mathbb{Z}, ad - bc = 1, \\ b \equiv 0 \mod 2 \text{ and } c \equiv 0 \mod 2N_{L} \right\}.$$

Then $\Gamma_L(Q)$ is an arithmetic subgroup of O(Q) and $\Gamma^L(Q)/(\text{cyclic group of order 4})$ is an arithmetic subgroup of $\text{PSl}_2(\mathbb{R})$ (contained in the Γ_{ϑ} theta group). Then using the corollary to Theorem 5 of [3] we have

THEOREM 1. Let φ be a $\widetilde{K} \times K$ finite function in $\mathbf{F}_Q^+(s^2 - 2s)$ with $s > \frac{1}{2}k$. Then the sum with $(G, g) \in \widetilde{\mathbf{Sl}_2} \times O(Q)$,

(1.1)
$$T_{\varphi}^{L}(G, g) = \sum_{\xi \in L} \pi_{Q}(G, g)^{-1}(\varphi)(\xi),$$

is absolutely convergent. Moreover, for $(\Omega, \gamma) \in \Gamma^L(Q) \times \Gamma_L(Q)$, we have the functional equation

(1.2)
$$T_{\varphi}^{L}(G\Omega, g\gamma) = \sigma_{Q}^{L}(\Omega, \gamma) T_{\varphi}^{L}(G, g),$$

where σ_Q^L is a unitary character on $\Gamma^L(Q) \times \Gamma_L(Q)$ taking values in S_4 (where $S_j = \{z \in \mathbb{C} \mid z^j = 1\}$ for j any positive integer). Moreover, T_{φ}^L is a C^{∞} function on $\widetilde{\operatorname{Sl}}_2 \times O(Q)$ satisfying $D * T_{\varphi}^L(G, g) = T_{\pi_Q(D)\varphi}^L(G, g)$ for any D in the

Copyright © 1977, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 10D20.