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We recall the notation and results of [3]. 
Let Q be the rational numbers. 
We let L be a Q integral lattice in Q*, i.e. Q(%x , J 2 ) G Z for all £1? £2 G 

L. Let Z,#(0 be the Q dual of L, i.e. LJQ) = {r? G Rk | Q(r?, £) G Z, VS € ^)-
Then L#(Q)/L is a finite Abelian group, and we letTV^ be the exponent of 
L*(Q)/L> i-e. the smallest positive integer x so that x • £ G Z, for all £ G LjjQ). 
Choosing a Z-basis -STj of L, we let DQ^L) =: det{Q(Jf/, Jfy)}. Then the integer 
DQ(L) is independent of the choice of basis of L. 

Then we define 

rL(Q)~{geo(Q)\m = L} 

and 

1 ^ ( 0 = <( I | , e ) k f t , c , d G Z , * d - Z > c = 1, l(C 3-')H 
ft = 0 mod 2 and c = 0 mod 2NL\ 

Then T L ( 0 is an arithmetic subgroup of 0 ( 0 and rL(0/(cyclic group of order 4) 
is an arithmetic subgroup of PS12(R) (contained in the T# theta group). Then 
using the corollary to Theorem 5 of [3] we have 

THEOREM 1. Let y be a K x K finite function in Fî(s2 - 2s) with s > 
Vik. Then the sum with (G, g) G s5£ x 0 ( 0 , 

(l.i) 7*(Gf g)=z «Q&> *rlton\ 
is absolutely convergent Moreover, for (12, 7) G 1^(0 x 1^(0, we have the 
functional equation 

(1.2) T£(Ga, gy) « a£ (S2, 7) 7* (G, *), 

w/iere OLQ is a unitary character on T L (0 x T L (0 taking values in S4 (where 
5y = {z G C I z7 = 1} for j any positive integer). Moreover, T^ is a C°° function 
onST2x 0 ( 0 satisfying D * T^(G, g) = 3* (D){p(G, g) for any D in the 
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