DISCRETE SPECTRUM OF THE WEIL REPRESENTATION

BY S. RALLIS AND G. SCHIFFMANN

Communicated by J. A. Wolf, September 10, 1976

1. Weil representation. Let Q be a nondegenerate quadratic form on \mathbb{R}^k . Let O(Q) be the orthogonal group of Q. One owes to A. Weil [4] the construction of a certain unitary representation π_Q of the group $\widetilde{Sl}_2 \times O(Q)$ in $L^2(\mathbb{R}^k)$, where \widetilde{Sl}_2 is a two fold covering of $Sl_2(\mathbb{R})$, i.e. given by pairs (g, ϵ) with $g \in Sl_2(\mathbb{R})$ and $\epsilon = \pm 1$ satisfying the group law $(g, \epsilon)(g', \epsilon') = (gg', V(g, g'), \epsilon\epsilon')$, where V is the Kubota cocycle on $Sl_2(\mathbb{R})$ (with values in \mathbb{Z}_2). Let $w_0 \in \widetilde{Sl}_2$ be the element $([\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}], -1)$. Then π_Q is given by

(i)
$$\pi_{\mathcal{Q}}(w_0)\varphi(X) = \delta_{\mathcal{Q}}\hat{\varphi}(-M_{\mathcal{Q}}(X)), \varphi \in L^2(\mathbb{R}^k),$$

where $M_Q \in \operatorname{Aut}(\mathbb{R}^k)$ so that $[X, M_Q(Y)] = Q(X, Y)$ for all $X, Y \in \mathbb{R}^k$ (with [,] the usual dot product on \mathbb{R}^k) and $\delta_Q = |\det Q|^{-1/2} u_Q$ with u_Q a certain eighth root of unity determined explicitly in [2]. Moreover, $\hat{}$ denotes the Fourier transform on $L^2(\mathbb{R}^k)$. Also we have

(ii)
$$\pi_{\mathcal{Q}}\left(\begin{bmatrix} \alpha & \beta \\ 0 & \alpha^{-1} \end{bmatrix}, 1\right)\varphi(X) = |\alpha|^{k/2} e^{\sqrt{-1}\pi\beta\alpha \mathcal{Q}(X,X)}\varphi(\alpha X), \text{ with } \alpha > 0$$

and

(iii)
$$\pi_Q(g)\varphi(X) = \varphi(g^{-1}X) \text{ for } g \in O(Q).$$

Then (i), (ii), and (iii) determine π_Q explicitly. The main problem is to give a spectral decomposition of π_Q .

2. Discrete spectrum of π_Q . Let \widetilde{K} be the maximal compact subgroup of $\widetilde{Sl_2}$ given by

$$\left\{ \left(\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}, \epsilon \right) \mid -\pi \leq \theta < \pi, \epsilon = \pm 1 \right\}.$$

Then every unitary character of K is given by

$$k(\theta, \epsilon) \rightsquigarrow (\operatorname{sgn} \epsilon)^{2m} e^{\sqrt{-1} m \theta} \quad \text{with } m \in \frac{1}{2}\mathbb{Z}.$$

We let

$$A = \left\{ a(r) = \left(\begin{bmatrix} r & 0 \\ 0 & r^{-1} \end{bmatrix}, 1 \right) | r > 0 \right\}$$

AMS (MOS) subject classifications (1970). Primary 22E45; Secondary 43A80.

Copyright © 1977, American Mathematical Society