FUNCTIONS AND CORRESPONDENCES IN A FINITE FIELD

BY L. CARLITZ ${ }^{1}$

1. Introduction. It is well known that any function from a finite field into itself can be represented by a polynomial with coefficients in the field. More precisely, if the field is of order q, then the function is represented by a unique polynomial of degree less than q. Conversely, any field with the property that any function from the field into itself can be represented by a polynomial with coefficients in the field, is necessarily finite [14]. It has been proved recently [1], [16] that if a ring R with identity has the property that any function from R into itself can be represented by a generalized polynomial, then R is isomorphic to the matric ring $(\mathrm{GF}(q))_{n}$, for some prime power q and some $n \geqslant 1$. As customary, we denote by $\mathrm{GF}(q)$ the finite field of order q. By a generalized polynomial is meant a sum of multinomials of the form

$$
a_{0} x^{e_{1}} a_{1} x^{e_{2}} \cdots a_{k-1} x^{e_{k}} a_{k}
$$

where $a_{i} \in R, e_{i}>0$ and k is arbitrary.
With every function f from $F_{q}=G F(q)$ into itself we may associate a set of numbers $a_{1}, a_{2}, \ldots, a_{k} \in F_{q}$ and a partition [5]-[8], [13]

$$
\begin{equation*}
F_{q}=A_{1} \cup A_{2} \cup \cdots \cup A_{k} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{i} \cap A_{j}=\varnothing \quad(i \neq j) \tag{1.2}
\end{equation*}
$$

the sets A_{i} are nonvacuous and

$$
\begin{equation*}
f\left(b_{i}\right)=a_{i} \quad\left(b_{i} \in A_{i} ; i=1,2, \ldots, k\right) \tag{1.3}
\end{equation*}
$$

For example, for the function $f(x)=x^{q-1}$, we have $k=2, a_{1}=0, a_{2}=1$, $A_{1}=\{0\}, A_{2}=\left\{a \mid a \in F_{q}, a \neq 0\right\}$. On the other hand, for the function $f(x)=x^{q-2}, k=q$ and each A_{i} consists of a single element. Thus x^{q-2} is a permutation function. Clearly, for any permutation function, the number of sets A_{i} in the partition (1.1) is equal to q.

We can generalize the above in the following way. Let

$$
\begin{equation*}
A_{0}, A_{1}, \ldots, A_{k} ; \quad B_{0}, B_{1}, \ldots, B_{k} \tag{1.4}
\end{equation*}
$$

denote partitions of F_{q}. It is assumed that each of the sets

$$
\begin{equation*}
A_{1}, \ldots, A_{k}, \quad B_{1}, \ldots, B_{k} \tag{1.5}
\end{equation*}
$$

is nonvacuous; however A_{0}, B_{0} are unrestricted. Then (by the Lagrange interpolation formula for several variables) there exists a polynomial [9] $f(x, y) \in F_{q}[x, y]$ such that

[^0]
[^0]: An address delivered to the American Mathematical Society in Tallahassee, Florida, March 4, 1976; received by the editors April 22, 1976.
 AMS (MOS) subject classifications (1970). Primary 12C05.
 Key words and phrases. Finite fields, functions, correspondences.
 ${ }^{1}$ Supported in part by NSF grant GP-37924X.

