ON THE ISOMETRIES OF $L^{p}(\Omega, X)$

BY A. R. SOUROUR¹

Communicated by Chandler Davis, September 10, 1976

The isometries of $L^p[0, 1]$, $1 \le p \le \infty$, $p \ne 2$, were determined by Banach [1, p. 178]. In that case every isometry T is of the form $(Tf)(\cdot) = u(\cdot)f(\phi(\cdot))$ where ϕ is a measurable transformation of [0, 1] onto itself and u is a fixed function related by ϕ by the formula $|u|^p = d(\lambda \circ \phi)/d\lambda$ where λ is Lebesgue measure. Lamperti [4] determined the isometries of $L^p(\Omega)$ for any σ -finite measure space (Ω, Σ, μ) . The result resembles Banach's except for the replacement of the point transformation ϕ by a set transformation. Cambern [3] determined the surjective isometries of $L^p(\Omega, K)$ for a separable Hilbert space K. These isometries resemble those of $L^p(\Omega)$ except for the emergence of an operator-valued function.

Our aim here is to describe the surjective isometries of $L^{p}(\Omega, X)$ for certain Banach spaces X (Theorem 1) and the *injective* isometries of $L^{p}(\Omega, K)$ for a separable Hilbert space K (Theorem 2).

Let (Ω, Σ, μ) be a σ -finite measure space. A set homomorphism Φ is a map of Σ into itself, defined modulo null sets, which preserves set differences and countable unions. If, in addition, $\mu(\Phi(\delta)) = 0$ if and only if $\mu(\delta) = 0$, then Φ is called a set isomorphism. It can be shown that Φ induces a transformation, also denoted by Φ , on the space of measurable functions defined on Ω with values in a separable Banach space X.

A Banach space X is called the l^p -direct sum of two Banach spaces X_1 and X_2 if X is isometrically isomorphic to $X_1 \oplus X_2$ with $||x_1 \oplus x_2||^p = ||x_1||^p + ||x_2||^p$.

THEOREM 1. Let T be an operator on $L^p(\Omega, X)$, $1 \le p < \infty$, $p \ne 2$, where X is a separable Banach space, and assume that X is not the l^p -direct sum of two nonzero Banach spaces (for the same p). Then T is a surjective isometry if and only if

(1)
$$(Tf)(\cdot) = S(\cdot)h(\cdot)(\Phi(f))(\cdot) \quad f \in L^p(\Omega, X),$$

where Φ is a set isomorphism of the measure space onto itself, S is a strongly measurable map of Ω into B(X) with S(t) a surjective isometry of X for almost all $t \in \Omega$, and $h = (d\nu/d\mu)^{1/p}$ where $\nu(\cdot) = \mu(\Phi^{-1}(\cdot))$.

AMS (MOS) subject classifications (1970). Primary 46E40, 46E30, 47B99.

Key words and phrases. Isometries, L^p spaces, vector-valued functions.

¹Part of this research was done while the author was a member of the Summer Research Institute on Operator Theory, University of New Hampshire, 1976. Supported by a National Science Foundation grant.

Copyright © 1977, American Mathematical Society