MODULI OF VECTOR BUNDLES ON CURVES WITH PARABOLIC STRUCTURES

BY C. S. SESHADRI

Communicated by Stephen S. Shatz, April 8, 1976

Let *H* be the upper half plane and Γ a discrete subgroup of Aut*H*. Suppose that $H \mod \Gamma$ is of *finite measure*. This work stems from the question whether there is an algebraic interpretation for the moduli of unitary representations of Γ similar to the case when $H \mod \Gamma$ is *compact* (cf. [3], [4], [5]). We show that this is indeed the case via the moduli of vector bundles on the compactification of $H \mod \Gamma$, provided with some additional structures which we propose to call *parabolic structures*. The idea of parabolic structures is inspired from A. Weil's work [6, §2, Chapter I, p. 56].

Let X be a smooth, irreducible, projective curve defined, say, over an algebraically closed field k. By vector bundles on X we understand algebraic vector bundles.

DEFINITION 1. Let V be a vector bundle on X and $Q \in X$. Then a quasiparabolic structure of V at Q is giving a flag on the fibre V_Q of V at Q, i.e., giving linear subspaces F^iV_Q of V_Q ,

 $V_Q = F^1 V_Q \supset F^2 V_Q \supset \cdots \supset F^r V_Q$; dim $F^i V_Q = l_i$; $l_1 > l_2 > \cdots > l_r$. We call $l = (l_1, \ldots, l_r)$ the type (or flag type) of the quasi-parabolic structure. Let $k_1 = l_1 - l_2$, $k_2 = l_2 - l_3$, \ldots , $k_{r-1} = l_{r-1} - l_r$, $k_r = l_r$; then k_i are called the *multiplicities* of the quasi-parabolic structure.

DEFINITION 2. Let V be a vector bundle on X and $Q \in X$. Then a parabolic structure of V at Q is giving

(i) a quasi-parabolic structure of V at Q; say $l = (l_1, \ldots, l_r)$ is its type and $\{k_i\}$ its multiplicities, and

(ii) constants $\alpha = (\alpha_1, \ldots, \alpha_n)$ called the *weights* of the parabolic structure such that $0 \le \alpha_1 \le \alpha_2 \le \cdots \le \alpha_n < 1$ and there are *r* distinct elements among α , say $\alpha' = (\alpha'_1, \ldots, \alpha'_r)$, $0 \le \alpha'_1 < \alpha'_2 < \cdots < \alpha'_r < 1$, such that α'_1 occurs k_1 times, α'_2 occurs k_2 times, \ldots, α'_r occurs k_r times among α . We call α'_i the weight of $F^i V_Q$. Note that $l_1 = n = rkV$.

Let V, W be vector bundles on X with *quasi-parabolic* structures at Q. An isomorphism $f: V \to W$ of vector bundles is said to be a *quasi-parabolic iso-morphism* if the types of V, W at Q are the same and $f_O(F^i V_O) = F^i W_O(f_O)$:

AMS (MOS) subject classifications (1970). Primary 14H20, 14H99; Secondary 32G13. Copyright © 1977, American Mathematical Society