CONTINUITY OF THE KOBAYASHI METRIC IN DEFORMATIONS AND FOR ALGEBRAIC MANIFOLDS OF GENERAL TYPE¹

BY MARCUS W. WRIGHT

Communicated by J. A. Wolf, July 26, 1976

Let *M* be a complex manifold and *TM* the holomorphic tangent bundle of *M*. The disc of radius *r* in **C** will be denoted by $\Delta(r)$, and Δ will stand for $\Delta(1)$. The Kobayashi pseudo-distance d_M and its infinitesimal pseudo-metric F_M are defined as follows:

(i) If $p, q \in M$, then

$$d_M(p,q) = \inf_{\{a_i\} \subset \Delta} \frac{1}{2} \sum_{i} \log \frac{1 + |a_i|}{1 - |a_i|}$$

where the infimum is over all finite sets $\{a_i\} \subset \Delta$ such that there exist *n* analytic mappings $f_i: \Delta \longrightarrow M$ for which $f_1(0) = p$, $f_i(a_i) = f_{i+1}(0)$ for i = 1, n-1, and $f_n(a_n) = q$.

(ii) If $\langle x, \xi \rangle \in TM$, then $F_M(x, \xi) = \inf 1/R$ where the infimum is over all R such that there exists an analytic $f: \Delta(R) \to M$ with $f_x(0, \partial/\partial z|_0) = \langle x, \xi \rangle$.

Royden has shown [5] that $d_M(p,q) = \inf_{\sigma} \int_{\sigma} F(\sigma, \dot{\sigma})$ where the infimum is over all piecewise smooth curves from p to q.

The manifold M is said to hyperbolic if $d_M(p,q) \neq 0$ whenever $p \neq q$.

A deformation of M is specified by giving an analytic space $S \subset \mathbb{C}^k$ and a family of integrable almost complex structures $\{\varphi_s | s \in S\}$ on M such that $\varphi_o = 0$ for some point $o \in S$; each φ_s is therefore a \mathbb{C}^{∞} TM-valued (0, 1) form on M, satisfying $\overline{\partial}\varphi_s - [\varphi_s, \varphi_s]/2 = 0$. See [2] for details. Using φ_s , we can construct a bundle isomorphism Φ_s : $TM \longrightarrow TM_s$, where TM_s is the holomorphic tangent bundle for the complex structure given by φ_s . Set $F_{M_s} = F_s$. Assume that o = 0, the origin in \mathbb{C}^k .

THEOREM A. Given $\langle x, \xi \rangle \in TM$ and $\epsilon > 0$, there exists a $\delta > 0$ such that if $|s| < \delta$ then $F_s(y, \eta) \leq F_o(x, \xi) + \epsilon ||\xi||$ for all $\langle y, \eta \rangle$ in a neighborhood of $\langle x, \Phi_s \xi \rangle$ in TM_s . (Here $||\xi||$ is the norm provided by a coordinate system.)

This basic upper semicontinuity result can be improved if F_M is known to

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 32H15, 32H20, 32G17, 32G05. ¹ This work supported in part by NSF Grant MPS-75-05270.