CONTINUITY OF THE KOBAYASHI METRIC IN DEFORMATIONS AND FOR ALGEBRAIC MANIFOLDS OF GENERAL TYPE ${ }^{1}$

BY MARCUS W. WRIGHT

Communicated by J. A. Wolf, July 26, 1976

Let M be a complex manifold and $T M$ the holomorphic tangent bundle

 of M. The disc of radius r in \mathbf{C} will be denoted by $\Delta(r)$, and Δ will stand for $\Delta(1)$. The Kobayashi pseudo-distance d_{M} and its infinitesimal pseudo-metric F_{M} are defined as follows:(i) If $p, q \in M$, then

$$
d_{M}(p, q)=\inf _{\left\{a_{i}\right\} \subset \Delta} \frac{1}{2} \sum_{i} \log \frac{1+\left|a_{i}\right|}{1-\left|a_{i}\right|}
$$

where the infimum is over all finite sets $\left\{a_{i}\right\} \subset \Delta$ such that there exist n analytic mappings $f_{i}: \Delta \longrightarrow M$ for which $f_{1}(0)=p, f_{i}\left(a_{i}\right)=f_{i+1}(0)$ for $i=1, n-1$, and $f_{n}\left(a_{n}\right)=q$.
(ii) If $\langle x, \xi\rangle \in T M$, then $F_{M}(x, \xi)=\inf 1 / R$ where the infimum is over all R such that there exists an analytic $f: \Delta(R) \rightarrow M$ with $f_{x}\left(0, \partial /\left.\partial z\right|_{0}\right)=$ $\langle x, \xi\rangle$.

Royden has shown [5] that $d_{M}(p, q)=\inf _{\sigma} \int_{\sigma} F(\sigma, \dot{\sigma})$ where the infimum is over all piecewise smooth curves from p to q.

The manifold M is said to hyperbolic if $d_{M}(p, q) \neq 0$ whenever $p \neq q$.
A deformation of M is specified by giving an analytic space $S \subset \mathbf{C}^{k}$ and a family of integrable almost complex structures $\left\{\varphi_{s} \mid s \in S\right\}$ on M such that $\varphi_{0}=$ 0 for some point $o \in S$; each φ_{s} is therefore a $C^{\infty} T M$-valued $(0,1)$ form on M, satisfying $\bar{\partial} \varphi_{s}-\left[\varphi_{s}, \varphi_{s}\right] / 2=0$. See [2] for details. Using φ_{s}, we can construct a bundle isomorphism $\Phi_{s}: T M \longrightarrow T M_{s}$, where $T M_{s}$ is the holomorphic tangent bundle for the complex structure given by φ_{s}. Set $F_{M_{s}}=F_{s}$. Assume that $o=0$, the origin in \mathbf{C}^{k}.

Theorem A. Given $\langle x, \xi\rangle \in T M$ and $\epsilon>0$, there exists $a \delta>0$ such that if $|s|<\delta$ then $F_{s}(y, \eta) \leqslant F_{o}(x, \xi)+\epsilon\|\xi\|$ for all $\langle y, \eta\rangle$ in a neighborhood of $\left\langle x, \Phi_{s} \xi\right\rangle$ in $T M_{s}$. (Here $\|\xi\|$ is the norm provided by a coordinate system.)

This basic upper semicontinuity result can be improved if F_{M} is known to

