THE FUNCTIONS OPERATING ON CERTAIN ALGEBRAS OF MULTIPLIERS¹

BY MISHA ZAFRAN

Communicated by A. P. Calderón, April 8, 1976

In this note, we announce a new result concerning functions operating on multiplier algebras. We begin by introducing the following notation. Let G be a LCA group with dual group Γ . M(G) will denote the algebra of finite, regular Borel measures on G. Let $M_0(G) = \{\mu \in M(G) | \hat{\mu} \text{ vanishes at } \infty \text{ on } \Gamma\}$. If $1 \leq p < \infty$, let $M_p(G)$ denote the class of multiplier transformations on $L_p(G)$. If $T \in M_p(G)$, \hat{T} will be the unique function in $L_{\infty}(\Gamma)$ so that $T(f)^{\uparrow} = \hat{T}\hat{f}$, for all integrable simple functions f. Finally, we write $C_0M_p(G) = \{T \in M_p(G) | \hat{T} \text{ is continuous and vanishes at } \infty \text{ on } \Gamma\}$.

Suppose that G is nondiscrete. It is well known that only entire functions operate on the Banach algebra M(G) [3, Chapter 6]. This result was strengthened in [1]. There, Igari showed that only entire functions operate from M(G) into the algebra $M_p(G)$, $1 , <math>p \neq 2$. In [4], Varopoulos showed that for compact G, only entire functions operate on $M_0(G)$. We have the following theorems, which, in a sense, may be viewed as the L_p analogues of the aforementioned result of Varopoulos.

THEOREM 1. Let $1 \le p \le \infty$ with $p \ne 2$. Suppose that $F: [-1, 1] \rightarrow C$ and that F operates on the algebra $C_0 M_p(\mathbf{T}^n)$. Then F coincides with an entire function in some neighborhood of 0.

THEOREM 2. Let $1 \le p \le \infty$ with $p \ne 2$, and let G denote one of the groups \mathbb{R}^n or \mathbb{Z}^n . Suppose that $F: [-1, 1] \longrightarrow \mathbb{C}$ and that F operates on the algebra $C_0 M_p(G)$. Then F coincides with an entire function on [-1, 1].

These results complete the investigation begun by the author in [5]. We now indicate some of the ideas involved in the proof.

Assume that G = T and $1 . By standard arguments (see [1] and [3, Chapter 6]) we may assume that <math>F(x) = \sum_{k=1}^{\infty} a_k x^k$ for $|x| < \epsilon$. It then suffices to show that there exists j_{ϵ} such that

$$|a_j| \le C_{\epsilon} 10^{j}$$

for all $j \ge j_e$. This is accomplished by studying refinements of the multipliers considered in [5]. Corresponding to the sequence $\{a_j\}$, we construct measures $\{\lambda_j\}, \lambda$ in $M(\mathbf{T})$ so that for all j

AMS (MOS) subject classifications (1970). Primary 42A18.

Copyright © 1976, American Mathematical Society

¹This work was supported in part by NSF Grant GP28112A.