THE FUNCTIONS OPERATING ON CERTAIN ALGEBRAS OF MULTIPLIERS ${ }^{1}$

BY MISHA ZAFRAN

Communicated by A. P. Calderón, April 8, 1976
In this note, we announce a new result concerning functions operating on multiplier algebras. We begin by introducing the following notation. Let G be a LCA group with dual group $\Gamma . M(G)$ will denote the algebra of finite, regular Borel measures on G. Let $M_{0}(G)=\{\mu \in M(G) \mid \hat{\mu}$ vanishes at ∞ on $\Gamma\}$. If $1 \leqslant$ $p<\infty$, let $M_{p}(G)$ denote the class of multiplier transformations on $L_{p}(G)$. If $T \in M_{p}(G), \hat{T}$ will be the unique function in $L_{\infty}(\Gamma)$ so that $T(f)^{\wedge}=\hat{T} \hat{f}$, for all integrable simple functions f. Finally, we write $C_{0} M_{p}(G)=\left\{T \in M_{p}(G) \mid \hat{T}\right.$ is continuous and vanishes at ∞ on Γ \}.

Suppose that G is nondiscrete. It is well known that only entire functions operate on the Banach algebra $M(G)$ [3, Chapter 6]. This result was strengthened in [1]. There, Igari showed that only entire functions operate from $M(G)$ into the algebra $M_{p}(G), 1<p<\infty, p \neq 2$. In [4], Varopoulos showed that for compact G, only entire functions operate on $M_{0}(G)$. We have the following theorems, which, in a sense, may be viewed as the L_{p} analogues of the aforementioned result of Varopoulos.

Theorem 1. Let $1<p<\infty$ with $p \neq 2$. Suppose that $F:[-1,1] \rightarrow \mathbf{C}$ and that F operates on the algebra $C_{0} M_{p}\left(\mathrm{~T}^{n}\right)$. Then F coincides with an entire function in some neighborhood of 0 .

Theorem 2. Let $1<p<\infty$ with $p \neq 2$, and let G denote one of the groups \mathbf{R}^{n} or \mathbf{Z}^{n}. Suppose that $F:[-1,1] \rightarrow \mathbf{C}$ and that F operates on the algebra $C_{0} M_{p}(G)$. Then F coincides with an entire function on $[-1,1]$.

These results complete the investigation begun by the author in [5]. We now indicate some of the ideas involved in the proof.

Assume that $G=\mathbf{T}$ and $1<\mathrm{p}<2$. By standard arguments (see [1] and [3, Chapter 6]) we may assume that $F(x)=\sum_{k=1}^{\infty} a_{k} x^{k}$ for $|x|<\epsilon$. It then suffices to show that there exists j_{ϵ} such that

$$
\begin{equation*}
\left|a_{j}\right| \leqslant C_{\epsilon} 10^{j} \tag{1}
\end{equation*}
$$

for all $j \geqslant j_{\epsilon}$. This is accomplished by studying refinements of the multipliers considered in [5]. Corresponding to the sequence $\left\{a_{j}\right\}$, we construct measures $\left\{\lambda_{j}\right\}, \lambda$ in $M(\mathbf{T})$ so that for all j

AMS (MOS) subject classifications (1970). Primary 42A18.
${ }^{1}$ This work was supported in part by NSF Grant GP 28112 A .

