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Introduction. We show in this note that set valued maximal monotone 
operators on a Hilbert space possess the upper semicontinuity property called 
property ( 0 , introduced by Cesari [2] and used extensively in the existence 
analysis of optimal control theory. As a particular consequence we conclude 
rather easily, the known result (see [1], for example) that maximal monotone 
operators have closed graph and are thus demiclosed. As a simple application of 
this to optimal control theory we give an existence theorem for a Mayer prob­
lem. Details and extensions are found in [5] where we study upper semicon­
tinuity in the context of semiclosure operators of general topology. 

Notations. Let H be a Hilbert space with inner product < , > and induced 
norm ||*||. Let 2H denote the collection of all nonempty subsets of H. As in 
[1], a set valued function F: H —• 2H is said to be maximal monotone, if its 
graph G(F) is maximal with the property that (y2 ~yi,x2 ~"*i) ^ 0 for all 

(*i > ^ I X (*2 > y-i) e G(F)- A s i n P I > F : H ~* 2H i s s a i d t 0 h a v e Property (Q) 
if for each x0 G H, 

(1) F(x0) = f i cl co \J{F(x), \\x - x 0 | | < 0} 

where cl co A denotes the (strong) closure of the convex hull of A. It is seen 
that if F is monotone then the right hand side of equation (1) is also monotone 
and hence we obtain 

THEOREM 1. IfF:H—+2H is maximal monotone, then F has property 

02). 

REMARKS. 1. It is to be noted that maximality is important in the above 
theorem. For example, if F(x) = {[*]}, x real,where [x] is the greatest integer 
< x, then F does not have property (Q) at x = 0. On the other hand, F is mono­
tone but not maximal since / + F is not surjective; indeed 3 ^ x + [x] for any 
real x. 

2. F(x) is closed and convex for each x EH, if F has property (Q) and 
hence if F is maximal monotone. 

3. Using Banach-Saks-Mazur theorem it is seen that if F has property (Q), 

yk —* J>o weakly, xk - * x0 strongly, and yk G F(xk), then y0 G F(x0). By 
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