STATISTICAL INDEPENDENCE OF LINEAR CONGRUENTIAL PSEUDO-RANDOM NUMBERS

BY HARALD NIEDERREITER ${ }^{1}$

Communicated by J. T. Schwartz, June 5, 1976
Given a modulus $m \geqslant 2$ and a multiplier λ relatively prime to m, a sequence y_{0}, y_{1}, \ldots of integers in the least residue system $\bmod m$ is generated by the recursion $y_{n+1} \equiv \lambda y_{n}(\bmod m)$ for $n=0,1, \ldots$, where the initial value y_{0} is relatively prime to m. The sequence x_{0}, x_{1}, \ldots in the interval $[0,1)$, defined by $x_{n}=y_{n} / m$ for $n=0,1, \ldots$, is then a sequence of pseudo-random numbers generated by the linear congruential method. The sequence is periodic, with the least period τ being the exponent to which λ belongs $\bmod m$.

For fixed $s \geqslant 2$, consider the s-tuples $\mathbf{x}_{n}=\left(x_{n}, x_{n+1}, \ldots, x_{n+s-1}\right), n=$ $0,1, \ldots$ We determine the empirical distribution of the s-tuples $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$ and compare it with the uniform distribution on $[0,1]^{s}$. The original sequence x_{0}, x_{1}, \ldots of linear congruential pseudo-random numbers passes the serial test (for the given value of s) if the deviation between these two distributions is small. To measure this deviation, we introduce the quantity

$$
D_{N}=\sup _{J}\left|F_{N}(J)-V(J)\right| \quad \text { for } N \geqslant 1,
$$

where the supremum is extended over all subintervals J of $[0,1]^{s}, F_{N}(J)$ is N^{-1} multiplied by the number of terms among $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N-1}$ falling into J, and $V(J)$ denotes the volume of J.

For a nonzero lattice point $\mathbf{h}=\left(h_{1}, \ldots, h_{s}\right) \in \mathbf{Z}^{s}$, let $r(\mathbf{h})$ be the absolute value of the product of all nonzero coordinates of h. We set

$$
R^{(s)}(\lambda, m, q)=\sum_{\substack{\mathbf{h}(\bmod m) \\ \mathbf{h} \cdot \lambda \equiv 0(q)}}(r(\mathbf{h}))^{-1}
$$

where the sum is extended over all nonzero lattice points \mathbf{h} with $-m / 2<h_{j} \leqslant$ $m / 2$ for $1 \leqslant j \leqslant s$ and $\mathbf{h} \cdot \lambda=h_{1}+h_{2} \lambda+\cdots+h_{s} \lambda^{s-1} \equiv 0(\bmod q)$. For prime moduli m, a somewhat simplified version of our result reads as follows.

Theorem 1. For a prime m and for a multiplier λ belonging to the exponent $\tau \bmod m$, we have

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 65C10, 68A55; Secondary 10G05, $10 \mathrm{K05}$.

 1 This research was supported by NSF Grant MPS72-05055A02 at the Institute for Advanced Study, Princeton, New Jersey, in the academic year 1974-1975.

