DISINTEGRATION OF MEASURES ON COMPACT TRANSFORMATION GROUPS

BY RUSSELL A. JOHNSON

Communicated by Alexandra Bellow, June 1, 1976

The present work falls into two parts. In the first, a left transformation group [2] (G, X) with G a compact *metric* group and X a locally compact Hausdorff space is given; in the second, a bitransformation group [2] (G, X, T) with G, X compact Hausdorff and T arbitrary is considered. It is always assumed that G acts *freely*; thus $g \cdot x = x$ implies g = identity in $G(x \in X)$.

1. Let $\pi: X \longrightarrow X/G \equiv Y$ be the projection. Let μ be a Radon measure on X, $\nu = \pi(\mu)$.

1.1. THEOREM. There is a disintegration [1], $\lambda: y \to \lambda_y$ of μ with respect to π such that

(a) λ_v is supported on $\pi^{-1}(y)$;

(b) λ is v-Lusin-measurable

(thus, if $K \subset Y$ is compact, there is a countable collection K_i of compact sets, with $\nu(K \sim \bigcup_{i=1}^{\infty} K_i) = 0$, such that $\lambda | K_i$ is continuous for each i). If λ' is another disintegration of μ with respect to π satisfying (a) and (b), then $\lambda' = \lambda$ ν -a.e.

To prove 1.1, one first assumes X is compact and G is a Lie group. In this case, X is "measure-theoretically" the product $Y \times G$; this follows from the existence of local cross-sections to the projection π [6]. Let $\pi_2: X \cong Y \times G \longrightarrow G$, and define a map ξ from $L^1(Y, \nu)$ to the space of Radon measures on G as follows: $\xi(f) = \pi_2[(f \circ \pi) \cdot \mu]$. Apply the Dunford-Pettis Theorem [3] to ξ to obtain a map ω from Y to $M_+(G)$ = the set of positive Radon measures η on G such that $||\eta|| = 1$. The map λ is easily obtained from ω . One now completes the proof by (i) approximating G by a sequence of Lie groups [6]; (ii) using the fact that there is a locally countable collection of pairwise disjoint compact subsets of Y the complement of whose union is locally ν -null [1].

2. First suppose G is metric. Let μ be a *T-ergodic* measure on X, and let λ be a disintegration of μ as in 1.1. Let $G \supset G_0 = \{g \in G | \int_X f(gx) d\mu(x) = \int_X f(x) d\mu(x)$ for all $f \in C(X)\}$; G_0 is a closed subgroup of G. Denote the normalized Haar measure on G_0 by γ_0 .

AMS (MOS) subject classifications (1970). Primary 28A50, 28A65, 54H20.

Copyright © 1976, American Mathematical Society