GLOBAL RESULTS IN CONTROL THEORY WITH APPLICATIONS TO UNIVALENT FUNCTIONS

BY S. FRIEDLAND¹ AND M. SCHIFFER²

Communicated by R. T. Seeley, January 29, 1976

1. A problem in control theory. Many classical coefficient problems in the theory of univalent functions can be stated as the following control problem. Consider a first order differential system

$$dx/dt = f(x, u(t)),$$

where $x = (x_1, \ldots, x_n)$, $u = (u_1, \ldots, u_m)$ and $f(x, u) = (f_1(x, u), \ldots, f_n(x, u))$ are real valued vectors. Assume that f is continuous on $\mathbb{R}^n \times \mathbb{R}^m$ and for fixed $u, f \in C^1(\mathbb{R}^n)$. The values of u(t) are in a compact domain $U \subset \mathbb{R}^m$. Denote by \overline{F} the class of all piecewise continuous functions u(t) for $t \ge 0$ with the values in U. Let x(t) satisfy a fixed initial condition $x(0) = \xi$. Denote by x(t, u) the solution of the system above for a given u(t) in \overline{F} . Let $F(x) = F(x_1, \ldots, x_n)$ belong to $C^1(\mathbb{R}^n)$.

THEOREM 1. Let $u^* = u^*(t)$ be a solution of the problem $\sup_{\tau} F(x(T, u)) = F(x(T, u^*))$, for T > 0. Consider the system

$$dx/dt = f(x, u^*(t)), x(\tau) = \eta$$

for $0 \le \tau \le T$. Define a function F_{τ} by the equality $F_{\tau}(\eta) = F(x(T))$. Then $x(\tau, u^*)$ solves the problem $\sup_{\tau} F_{\tau}(x(\tau, u)) = F_{\tau}(x(\tau, u^*))$.

The proof of the theorem follows by considering the functions u(t) such that $u(t) = u^*(t)$ for $\tau < t \le T$. In case where f(x, u) = A(u)x and $F(x) = \lambda'_0 x$ Theorem 1 has a very simple form. Here $A(u) = (a_{ij}(u))_1^n$ and $a_{ij}(u) \in C(\mathbb{R}^m)$. By A' and λ' we denote the corresponding transposed matrix and vector.

THEOREM 2. Consider a control system dx/dt = A(u(t))x. Let $u^*(t)$ solve the linear problem

$$\sup_{\tau} \lambda'_0 x(T, u) = \lambda'_0 x(T, u^*).$$

Then $x(\tau, u^*)$ solves the linear problem

$$\sup_{F}\lambda'(\tau)x(\tau, u) = \lambda'(\tau)x(\tau, u^*),$$

AMS (MOS) subject classifications (1970). Primary 49B10; 30A34.

¹The first author was supported in part by NSF grant MPS 72-05055 A02.

²The second author was supported by NSF grant MPS 75-23332.

Copyright © 1976, American Mathematical Society