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1. A problem in control theory. Many classical coefficient problems in the 
theory of univalent functions can be stated as the following control problem. 
Consider a first order differential system 

dx/dt = f(x, u(f))9 

where x = (xt, . . . , xn), u = (ut, . . . , um) and f(x, u) = (^(x, u), . . . , 
fn(x, u)) are real valued vectors. Assume that ƒ is continuous on Rn x Rm and 
for fixed u,fG Cx(Rn). The values of u(t) are in a compact domain U C Rm. 

Denote by F the class of all piecewise continuous functions u(f) for t > 0 with 
the values in (J. Let x(t) satisfy a fixed initial condition x(0) = £. Denote by 
x(t, u) the solution of the system above for a given u{t) in f. Let F(x) = 
F(xx, . . . , xn) belong to C1(Rn). 

THEOREM 1. Let u* = u*(t) be a solution of the problem sup¥F(x(Tf u)) 

= F(x(T, M*)), for T > 0. Consider the system 

dx/dt = f(x, t/*(0)5 x(j) = 1? 

forO<r<T. Define a function FT by the equality FT(r\) = F(x(T)). Then 

X(T, W*) solves the problem supFFr(x(r, u)) = FT(X(T, M*)). 

The proof of the theorem follows by considering the functions u(t) such 
that u(t) = «*(/) for r < f < 7. In case where ƒ(*, i/) = A(u)x and F(x) = 
\'0x Theorem 1 has a very simple form. Here A(u) = (aJu)}" and a(Âu) E 
C(jRm). By A' and X' we denote the corresponding transposed matrix and vector. 

THEOREM 2. Consider a control system dx/dt = A(u(t))x. Let u*(t) 
solve the linear problem 

supFX'0x(7; w) = X'0x(r, w*). 

Then x(r, w*) so/ves f/ze linear problem 

SUPFX'(T)X(T, W) = X'(r)x(r, w*), 
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