RESEARCH ANNOUNCEMENTS

INDECOMPOSABLE MODULES: AMALGAMATIONS

BY ROBERT GORDON ${ }^{1}$ AND EDWARD L. GREEN ${ }^{2}$
Communicated by Hyman Bass, April 19, 1976

The determination of criteria for amalgamations (pushouts) of indecomposable modules to be indecomposable is a well-known central problem of representation theory upon which not much progress has been made. Here we announce two results on amalgamations, and describe some of their applications to the representation theory of Artin rings. We refer the reader to [3] for the notions of modules with cores and modules with cocores, recalling that such modules are indecomposable. In the cited paper basic modules were also discussed-we mention that a module B of finite length is basic precisely when $B / \mathrm{rad} B$ is simple. Our first result is valid in any module category.

Theorem 1. Let M_{1} be indecomposable and $\theta_{i}: A \longrightarrow M_{i}$ proper monomorphisms, $i=1,2$, such that $\operatorname{Hom}\left(M_{1}, M_{2} / \operatorname{im} \theta_{2}\right)=0$. Let X be the pushout of θ_{1} and θ_{2}.
(i) If M_{2} is indecomposable and $\operatorname{Hom}\left(M_{2}, M_{1} / \operatorname{im} \theta_{1}\right)=0$, then X is indecomposable.
(ii) If $M_{2} / \operatorname{im} \theta_{2}$ is indecomposable then X is indecomposable if and only if there is no homomorphism $f: M_{2} \rightarrow M_{1}$ such that $f \theta_{2}=\theta_{1}$.

The only result we know of bearing any resemblance to our second result is a lemma of Ringel [5, p. 313].

Theorem 2. If

$$
0 \rightarrow S \rightarrow B_{1} \oplus B_{2} \xrightarrow{\left(\rho_{1}, \rho_{2}\right)} M \rightarrow 0
$$

is a nonsplit exact sequence where S is a simple module and B_{1} and B_{2} are basic modules of finite length, then M is indecomposable if and only if neither ρ_{1} nor ρ_{2} is a split monomorphism.

If S is a simple submodule of a nonsimple basic module B over a homomorphic image of a hereditary left Artin ring such that Ext ${ }^{1}(B, B)=0$ then, using Theorem 2, it is readily checked that the cokernel of some homomorphism $S \rightarrow B \oplus B$ is indecomposable if and only if $\operatorname{Ext}^{1}(B / S, B) \neq 0$. When $\operatorname{Ext}^{1}(B, B) \neq 0$ we have

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 16A64; Secondary 16A46.
 ${ }^{1}$ Research partially supported by NSF Grant MPS 75-06327.
 ${ }^{2}$ Research partially supported by NSF Grant MPS 71-03064.

