INDEPENDENT KNOTS IN BIRKHOFF INTERPOLATION¹

BY G. G. LORENTZ

Communicated by Alberto P. Calderón, April 8, 1976

We consider Birkhoff interpolation for an incidence matrix $E = (e_{ik})_{i=1}^{m}; {n \atop k=0}^{n}$, the "polynomials" $P = \sum_{0}^{n} a_{k} u_{k}(x)$, for a system $U = \{u_{k}\}_{0}^{n}$ of functions $u_{k} \in C^{n}[a, b]$ (or $P = \{x^{k}\}_{0}^{n}$) and the knots $X = (x_{1}, \ldots, x_{m})$ satisfying $a \leq x_{1} < \cdots < x_{m} \leq b$. The method of independent knots appears for the first time in [4]; it is somewhat related to the coalescence method [1], [3].

A function $f \in C^n[a, b]$ is annihilated by E, X if

(1) $f^{(k)}(x_i) = 0$ for all (i, k) with $e_{ik} = 1$.

From zeros of f and its derivatives given by (1), one can derive further zeros by means of Rolle's theorem. This leads to the following definition. A Rolle set R for a function f annihilated by E, X is a collection \mathcal{R}_k , $k = 0, \ldots, n$, of Rolle sets of zeros (with multiplicities) of the $f^{(k)}$. The sets R_k are defined inductively: R_0 consists of the zeros of f given by (1); if R_0, \ldots, R_k have been defined, we select R_{k+1} -some of the zeros of $f^{(k+1)}$ -as follows: (a) R_{k+1} contains all zeros of $f^{(k)}$ of multiplicity > 1, their multiplicities reduced by 1. (β) R_{k+1} contains all zeros of $f^{(k+1)}$ (with multiplicities) given by (1). (γ) For any two adjacent zeros $\alpha, \beta \in \mathbb{R}_k$ we select a zero γ of $f^{(k+1)}$ by means of Rolle's theorem, provided one exists not listed in (1). This new zero γ may be different from the x_i ; it may be one of the x_i , but not listed in (1) as a zero of $f^{(k+1)}$; finally, γ may appear as an additional multiplicity of a zero x, of $f^{(k+1)}$ by (1). In this case, $e_{i,k+1} = \cdots = e_{i,k+t} = 1$, $e_{i,k+t+1} = 0$. If no zero γ as specified exists, there is a loss. (δ) We adjust the multiplicities in the last case of (γ): if also $e_{i,k+t+2} = \cdots = e_{i,k+s+1} = 0$, then γ belongs to R_{k+1} with multiplicity s. A Rolle set constructed without losses is maximal. A function f annihilated by E, Xmay have several Rolle sets, some of them maximal, others are not. Let m_k be the number of ones in the column k of E, let

(2)
$$\mu_k = (\cdots ((m_0 - 1)_+ + m_1 - 1)_+ + \cdots + m_{k-1} - 1)_+ + m_k.$$

LEMMA 1. The number of distinct Rolle zeros of $f^{(k)}$ in a maximal Rolle set is exactly μ_k .

Let E be a Birkhoff matrix, let E^0 be derived from E by replacing a one,

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 41A05; Secondary 15A36. ¹Research partially supported by NSF grant MPS 75-09833.