THEORY OF ANNIHILATION GAMES

BY A. S. FRAENKEL AND Y. YESHA Communicated by John L. Kelley, December 23, 1975

Throughout, R = (V(R), E(R)) is a finite loopless digraph with vertex set V(R) and edge set $E(R) \subset V(R) \times V(R)$, which may contain cycles. Let $F(u) = \{v \in V(R): (u, v) \in E(R)\}, Z =$ nonnegative integers, $GF(2)^n =$ the *n*-fold cartesian product of GF(2).

Put any number of stones on distinct vertices of R. Two players play alternately. Each player at his turn moves one stone from a vertex u to some $v \in F(u)$. If v was occupied, both stones get removed (*annihilation*). The player making the last move wins. If there is no last move, the game is a tie.

Such an annihilation game belongs to a large class of combinatorial games discussed in [1], [3], which are analyzable by the Generalized Sprague-Grundy Function (GSG-function) $G: V(R) \rightarrow Z \cup \{\infty\}$ [1], [2], [3] with associated counter function $c: V^f(R) \rightarrow Z$, where $V^f(R) = \{u \in V(R): G(u) < \infty\}$ [2]. Here R is the game-graph of the game.

Our main result is the construction of a complete strategy for the game, which is polynomial in n = |V(R)|.

Let C(R) be the game-graph of the annihilation game on R, also called the *contrajunctive compound* of R. If $V(R) = \{u_1, \ldots, u_n\}$, the vertices of V(C(R)) (= game positions) constitute the set of all *n*-tuples $\overline{u} = (\alpha_1, \ldots, \alpha_n)$ over GF(2), where $\alpha_i = 1$ if and only if a stone is on u_i . Also $(\overline{u}, \overline{v}) \subset E(C(R))$ if and only if there is a move from \overline{u} to \overline{v} . Thus V(C(R)) is identical with the linear space $GF(2)^n$ under the operation \bigoplus , Σ' of Nim-sum (below: Generalized Nim-sum [1], [3]).

LEMMA 1. Let

 $C^{f}(R) = \{\overline{u} \in V(C(R)): \ G(\overline{u}) < \infty\}, \quad C_{i}(R) = \{\overline{u} \in V(C(R)): \ G(\overline{u}) = i < \infty\}.$

Then

(i) $C^{f}(R)$ is a linear subspace of V(C(R)).

(ii) G is a homomorphism from $C^{f}(R)$ onto $GF(2)^{t}$ with kernel $C_{0}(R)$ ($t = O(\log_{2} n)$). In fact,

$$G(\overline{u}) < \infty \Rightarrow G(\overline{u} \oplus \overline{v}) = G(\overline{u}) \oplus G(\overline{v}).$$

(iii) $\{C_i(R): 0 \le i < 2^t\} = C^f(R)/C_0(R).$

AMS (MOS) subject classifications (1970). Primary 05C20, 68A10, 68A20, 90D05. Copyright © 1976, American Mathematical Society