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Throughout, R = (V(R), E(R)) is a finite loopless digraph with vertex set 
V(R) and edge set E(R) C V(R) x V(R), which may contain cycles. Let F(u) = 
{v G V(R): (u, v)EE(R)}> Z = nonnegative integers, GF(2)n = the «-fold carte­
sian product of GF(2). 

Put any number of stones on distinct vertices of R. Two players play alter­
nately. Each player at his turn moves one stone from a vertex u to some v G 
F(ü). If v was occupied, both stones get removed (annihilation). The player 
making the last move wins. If there is no last move, the game is a tie. 

Such an annihilation game belongs to a large class of combinatorial games 
discussed in [1] , [3] , which are analyzable by the Generalized Sprague-Grundy 

Function (GSG-function) G: V(R) - > Z U {«>} [ i ] , [2], [3] with associated 
counter function c: Vf(R)-+Z9 where Vf(R) = {u G V(R): G(u) < <»} [2]. 
Here R is the game-graph of the game. 

Our main result is the construction of a complete strategy for the game, 
which is polynomial in n = I V(R)\. 

Let C(R) be the game-graph of the annihilation game on R, also called the 
contrajunctive compound of R. If V(R) = {ux, . . . , un}, the vertices of 
V(C(R)) (= game positions) constitute the set of all «-tuples û = (pt19 . . . , an) 

over GF(2), where at = 1 if and only if a stone is on uv Also (w, v) C E(C(R)) 

if and only if there is a move from u to ü". Thus V(C(R)) is identical with the 
linear space GF(2)n under the operation ©, Z' of Nim-sum (below: Generalized 

Nim-sum [1], [3]). 

LEMMA 1. Let 

Cf(R) = { u G V(C(R)): G(U) < ~ } , q(R) = {ûG K(C(*)): G(w) = ƒ < <*>}. 

(i) Cf(R) is a linear subspace of V(C(R)). 

(ii) G is a homomorphism from C?(R) onto GF(2)f with kernel C0(R) 

(t = 0(log2«)). In factt 

Q(u) <oo=>G(U®v) = G(u) © G(U). 

(iii) {C{R): 0<i<2f} = Cf(R)lC0(R). 
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