THEORY OF ANNIHILATION GAMES

BY A. S. FRAENKEL AND Y. YESHA
Communicated by John L. Kelley, December 23, 1975

Throughout, $R=(V(R), E(R))$ is a finite loopless digraph with vertex set $V(R)$ and edge set $E(R) \subset V(R) \times V(R)$, which may contain cycles. Let $F(u)=$ $\{v \in V(R):(u, v) \in E(R)\}, Z=$ nonnegative integers, $G F(2)^{n}=$ the n-fold cartesian product of $G F(2)$.

Put any number of stones on distinct vertices of R. Two players play alternately. Each player at his turn moves one stone from a vertex u to some $v \in$ $F(u)$. If v was occupied, both stones get removed (annihilation). The player making the last move wins. If there is no last move, the game is a tie.

Such an annihilation game belongs to a large class of combinatorial games discussed in [1], [3], which are analyzable by the Generalized Sprague-Grundy Function (GSG-function) $G: V(R) \longrightarrow Z \cup\{\infty\}$ [1], [2], [3] with associated counter function $c: V^{f}(R) \longrightarrow Z$, where $V^{f}(R)=\{u \in V(R): G(u)<\infty\}$ [2]. Here R is the game-graph of the game.

Our main result is the construction of a complete strategy for the game, which is polynomial in $n=|V(R)|$.

Let $C(R)$ be the game-graph of the annihilation game on R, also called the contrajunctive compound of R. If $V(R)=\left\{u_{1}, \ldots, u_{n}\right\}$, the vertices of $V(C(R))\left(=\right.$ game positions) constitute the set of all n-tuples $\bar{u}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ over $G F(2)$, where $\alpha_{i}=1$ if and only if a stone is on u_{i}. Also $(\bar{u}, \bar{v}) \subset E(C(R))$ if and only if there is a move from \bar{u} to \bar{v}. Thus $V(C(R))$ is identical with the linear space $G F(2)^{n}$ under the operation \oplus, Σ^{\prime} of Nim-sum (below: Generalized Nim-sum [1], [3]).

Lemma 1. Let

$$
C^{f}(R)=\{\bar{u} \in V(C(R)): G(\bar{u})<\infty\}, \quad C_{i}(R)=\{\bar{u} \in V(C(R)): G(\bar{u})=i<\infty\} .
$$

Then
(i) $C^{f}(R)$ is a linear subspace of $V(C(R))$.
(ii) G is a homomorphism from $C^{f}(R)$ onto $G F(2)^{t}$ with kernel $C_{0}(R)$ $\left(t=O\left(\log _{2} n\right)\right)$. In fact,

$$
\mathrm{G}(\bar{u})<\infty \Rightarrow G(\bar{u} \oplus \bar{v})=G(\bar{u}) \oplus G(\bar{v}) .
$$

(iii) $\left\{C_{i}(R): 0 \leqslant i<2^{t}\right\}=C^{f}(R) / C_{0}(R)$.

