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By the Jordan-Zassenhaus Theorem there is only a finite number of conju­
gate classes (called Z-classes) of finite subgroups of GL(«, Z). After various 
authors have determined all of these groups for n < 4 [4] , [3], as well as the 
maximal finite subgroups of GL(5, Z) [2], [7], [8], we develop new methods 
for the determination of the absolutely irreducible maximal finite subgroups of 
GL(«, Z) and compute these groups for n = 5, 6, 7. (We remark that irreducibility 
is tantamount to absolute irreducibility in case n is an odd prime number.) The 
algorithm proceeds in three steps. 

1. Every absolutely irreducible finite subgroup G of GL(n, Z) fixes, up to 
scalar multiples, exactly one positive definite symmetric matrix I E Z n X " called 
the form of G: 

gTXg = X for all# £ G 

It follows that each maximal finite absolutely irreducible subgroup H of GL(/t, Z) 
is the full Z-automorph of its form. (The Z-automorph of a positive form is 
certainly finite.) But the form of H is already determined by each of the abso­
lutely irreducible subgroups of H. So at step 1 we determine all finite minimal 
absolutely irreducible subgroups of GL(#, Z) up to conjugacy under GL(#, Q), 
i.e. those absolutely irreducible groups which do not contain any proper absolutely 
irreducible subgroups. This is essentially a task of classical representation theory. 
As for the primitive groups we refer to papers by Brauer [1] , Wales [9], and 
Lindsey [5] . To find the imprimitive groups we first had to prove an integral 
version of Clifford's Theorem. For n = 5 and 7 there are 2 minimal absolutely 
irreducible groups to be considered, but 33 for n = 6 because 6 is no prime so 
that many imprimitive groups turn up. 

2. Step 2 consists of finding the Z-classes of the groups determined at step 
1 which was done by means of electronic computation using the centering algo­
rithm developed in [6] . Let us describe the algorithm in module theoretic terms. 
Let L and M be Q-equivalent ZG-representation modules, i.e. QL = Q G QM, 
then M is Z-equivalent to a submodule M' of L of finite index in L. One can 
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