ON MAXIMAL FINITE IRREDUCIBLE SUBGROUPS OF GL(n, Z) **I. THE FIVE AND SEVEN DIMENSIONAL CASE II. THE SIX DIMENSIONAL CASE**

BY WILHELM PLESKEN AND MICHAEL POHST Communicated by Olga Taussky Todd, February 16, 1976

By the Jordan-Zassenhaus Theorem there is only a finite number of conjugate classes (called Z-classes) of finite subgroups of $GL(n, Z)$. After various authors have determined all of these groups for $n \leq 4$ [4], [3], as well as the maximal finite subgroups of $GL(5, Z)$ [2], [7], [8], we develop new methods for the determination of the absolutely irreducible maximal finite subgroups of GL(n, **Z**) and compute these groups for $n = 5, 6, 7$. (We remark that irreducibility is tantamount to absolute irreducibility in case *n* is an odd prime number.) The algorithm proceeds in three steps.

1. Every absolutely irreducible finite subgroup *G* of *GL(n,* Z) fixes, up to scalar multiples, exactly one positive definite symmetric matrix $X \in \mathbb{Z}^{n \times n}$ called the form of *G:*

$$
g^T X g = X \quad \text{for all } g \in G.
$$

It follows that each maximal finite absolutely irreducible subgroup *H* of $GL(n, Z)$ is the full Z-automorph of its form. (The Z-automorph of a positive form is certainly finite.) But the form of H is already determined by each of the absolutely irreducible subgroups of *H.* So at step 1 we determine all finite minimal absolutely irreducible subgroups of $GL(n, Z)$ up to conjugacy under $GL(n, Q)$, i.e. those absolutely irreducible groups which do not contain any proper absolutely irreducible subgroups. This is essentially a task of classical representation theory. As for the primitive groups we refer to papers by Brauer **[1]**, Wales [9], and Lindsey **[5]**. To find the imprimitive groups we first had to prove an integral version of Clifford's Theorem. For $n = 5$ and 7 there are 2 minimal absolutely irreducible groups to be considered, but 33 for $n = 6$ because 6 is no prime so that many imprimitive groups turn up.

2. Step 2 consists of finding the Z-classes of the groups determined at step 1 which was done by means of electronic computation using the centering algorithm developed in **[6]**. Let us describe the algorithm in module theoretic terms. Let *L* and *M* be Q-equivalent ZG-representation modules, i.e. $QL \cong {}_{OG} QM$, then *M* is **Z**-equivalent to a submodule M' of *L* of finite index in *L*. One can

AMS (MOS) subject classifications (1970). Primary 20C10.

Key words and phrases. Integral matrix groups.

Copyright © 1976, American Mathematical Society