TRANSFERENCE RESULTS FOR MULTIPLIER OPERATORS

BY R. O. GANDULFO
Communicated by François Treves, January 30, 1976

The purpose of this paper is to show a transference result of the type obtained in [4] and [5] for convolution operators acting on functions defined on Σ_{n-1}, the unit sphere of \mathbf{R}^{n}. As a consequence we obtain a multiplier theorem for expansions in spherical harmonics and Gegenbauer polynomials. Also, Zygmund's inequality for Cesáro sums and that for Littlewood-Paley function g_{δ}, due to Bonami and Clerc [1], are easily obtained using our results [6] . I wish to express my appreciation to my Ph.D advisors, Professor R. Coifman and G. Weiss, for their encouragement and help in the preparation of this work.

Introduction. Let $\operatorname{SO}(n)$ be the group of all rotations of \mathbf{R}^{n}. The left regular representation of $\operatorname{SO}(n)$ defined by $R_{u} f(x)=f\left(u^{-1} x\right), u \in \mathrm{SO}(n)$ and $f \in L^{2}\left(\Sigma_{n-1}\right)$, decomposes into a direct sum of finite dimensional irreducible representations $R^{k}(n \geqslant 3), k=0,1, \ldots L^{2}\left(\Sigma_{n-1}\right)=\Sigma_{k=0}^{\infty} H_{k}$, where H_{k}, the space of the representation R^{k}, consists of the spherical harmonics of degree k [2], [8], [9]. If $f \in L^{2}\left(\Sigma_{n-1}\right), f(x)=\Sigma_{k=0}^{\infty}\left(Z_{e, n-1}^{(k)} * f\right)(x)$, where $Z_{e, n-1}^{(k)}(x)$ is the zonal spherical harmonic of degree k and pole $e=(0, \ldots, 0,1)$ and $*$ denotes convolution on Σ_{n-1}. A multiplier M, is an operator that commutes with the action of $\operatorname{SO}(n)$ on Σ_{n-1} and is defined on the class P of finite linear combinations of elements in the spaces H_{k}. Such M assume the form

$$
M f(x)=\sum m_{k}\left(Z_{e, n-1}^{(k)} * f\right)(x) \quad \text { (finite sum) }
$$

Multipliers for expansions in spherical harmonics. Let H be a Hilbert space over the complex numbers and let $L^{p}\left(\Sigma_{n-1}, H\right), 1 \leqslant p \leqslant \infty$, be the space of functions $f: \Sigma_{n-1} \rightarrow H$ defined in the usual way replacing absolute values by $\|\cdot\|_{H}$. For the left regular representation of $\operatorname{SO}(n)$ on $L^{2}\left(\Sigma_{n-1}, H\right)$ we have a decomposition entirely similar to the one described above [3]. To a bounded operator on L^{2} which commutes with rotations, corresponds a bounded sequence $\left\{m_{k}\right\}_{k=0}^{\infty}$ of operators on H such that $M f(x)=\Sigma m_{k}\left(Z_{e, n-1}^{(k)} * f(x)\right)$ (finite sum) for every $f \in P$. The operator valued function

$$
K_{r}(x)=\sum_{k=0}^{\infty} r^{k} Z_{e, n-1}^{(k)}(x) m_{k}, \quad r \in[0,1)
$$

is continuous. We write $M f(x)=\lim _{r \rightarrow 1}\left(K_{r} * f\right)(x)$.

