ON SURFACES OBTAINED FROM QUATERNION ALGEBRAS OVER REAL QUADRATIC FIELDS¹

BY IRA SHAVEL

Communicated by Hyman Bass, May 9, 1976

Let A be a totally indefinite division quaternion algebra with center $k = Q(\sqrt{d}), d > 0$, 0 a maximal order in A, and $\Gamma(1) = \{\alpha \in 0 | \nu(\alpha) = 1\}$ where ν is the reduced norm from A to k. Fix an isomorphism λ such that $A \otimes_Q \mathbb{R} \cong M_2(\mathbb{R}) \oplus M_2(\mathbb{R})$. Then $\lambda(\Gamma(1) \otimes_Q 1) \subseteq SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$, and $j(\Gamma(1)) = \Gamma(1)/(\text{center }\Gamma(1))$ acts holomorphically and properly discontinuously on $X = H \times H$, where H is the usual upper half plane. In general, if Γ is any group of holomorphic automorphisms of X acting properly discontinuously and without fixed points, then $\Gamma \setminus X$ is a complex manifold. Since A is division the quotient is compact, and it is known to be a projective algebraic variety. In this note we discuss the numerical invariants and second cohomology group of $U(\Gamma) = \Gamma \setminus H \times H$ where Γ is commensurable with $\Gamma(1)$.

(A) For any algebraic number field F, a quaternion algebra with center F is determined up to isomorphism by a finite set S(A) of prime divisors of F. Denote this algebra by A(F, S(A)).

THEOREM 1. Assume h(k) = class number of k = 1. Let $j(\Gamma(1)) = \Gamma(1)/\{\pm 1\}, A = A(k, S(A)), and let$

$$\left(\, \overline{p} \, \right)$$

be the Kronecker symbol. $j(\Gamma(1))$ acts on X without fixed points \Leftrightarrow all of the following hold:

(1)
$$\left(\frac{-3}{p}\right) = 1 \quad or \quad \left(\frac{-D}{p}\right) = 1$$

for some $P \in S(A)$, where $p\mathbb{Z} = P \cap \mathbb{Z}$ and -D' is the discriminant of the field $\mathbb{Q}(\sqrt{-3d})$.

(2)
$$\left(\frac{-1}{p}\right) = 1 \text{ or } \left(\frac{-D'}{p}\right) = 1$$

for some $P \in S(A)$, where $p\mathbf{Z} = P \cap \mathbf{Z}$ and -D' is the discriminant of the field $\mathbf{Q}(\sqrt{-d})$.

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 14J20; Secondary 12A80, 22E40. ¹ Partial results of the author's dissertation [3] under M. Kuga.