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Introduction. The purpose of this announcement is to present, in a unified 
fashion, solutions to long outstanding questions concerning the relationship between 
countable paracompactness and normality conditions in perfect spaces. Each 
section of this paper is the contribution of a single author and is so designated. 

It was established in 1951 by Dowker [4] that in perfect spaces (i.e. 
spaces in which closed sets are G6-sets), normality implies countable paracompact­
ness. However, the validity of the converse has remained an open question 
until the present. In particular, the relationships between normality, countable 
paracompactness, and pseudo-normality in Moore spaces has been of considerable 
interest ( [8] , [10], [11], [17], [19], and [20], for example). In this paper, 
the authors (1) produce an example of a countably paracompact, perfect, non-
normal T3-space, (2) produce an example of a pseudo-normal, separable, non-
countably paracompact Moore space, and (3) show the consistency and independ­
ence of the existence of a countably paracompact, separable, nonnormal Moore 
space. In addition, several corollaries are given which answer open questions 
concerning the hereditary and mapping properties of countable paracompactness 
in perfect spaces. 

I. (Wage [17]). The construction given below associates a regular, non-
normal T2 -space X* to each normal, noncollectionwise normal space X. 

THE MACHINE. Suppose X is a normal T2-space and { # a ^ < x is a discrete 
collection of closed sets which cannot be separated by open sets. Let D = XW, 
where H = \J{Ha: a < X}. Denote 

I * = ( I x {0, 1}) U (P x {(a, P): a, j8 < X and a ¥= j3}). 

For each A C X md 6 G {0, 1} U {(a, 0): a, 0 < X and a #= 0}, let A6 denote 
(A x {6}) n X*. Now, define a base 8 for the desired topology on X* as follows 

(1) if x G X*\(H0 U Hx)9 let {x} G B; and 
(2) if U is an open set in X and a < X such that U C (IP U D), let 
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