THE RIESZ DECOMPOSITION

 FOR VECTOR-VALUED AMARTSBY G. A. EDGAR AND L. SUCHESTON ${ }^{1}$
Communicated by Alexandra Bellow, April 12, 1976

Let (Ω, F, P) be a probability space, $\mathbf{N}=\{1,2, \ldots\}$, and let $\left(F_{n}\right)_{n \in \mathbf{N}}$ be an increasing sequence of σ-algebras contained in F. A stopping time is a mapping $\tau: \Omega \longrightarrow \mathbf{N} \cup\{\infty\}$, such that $\{\tau=n\} \in F_{n}$ for all $n \in \mathbf{N}$. The collection of bounded stopping times is denoted by T; under the natural ordering T is a directed set 'filtering to the right'.

Let \mathbf{E} be a Banach space and consider a sequence $\left(X_{n}\right)_{n \in \mathbb{N}}$ of \mathbf{E}-valued random variables adapted to $\left(F_{n}\right)$, i.e., such that $X_{n}: \Omega \rightarrow \mathbf{E}$ is F_{n}-strongly measurable. $E X$ (expectation of X) is the Pettis integral of $X ; E_{A} X$ denotes $E\left(1_{A} \cdot X\right)$. The sequence $\left(X_{n}\right)$ is called an amart iff each X_{n} is Pettis integrable and $\lim _{T} E\left(X_{\tau}\right)$ exists in the strong topology of \mathbf{E}.

The real Riesz decomposition theorem for amarts [4] asserts that an amart X_{n} can be uniquely written as a sum of a martingale Y_{n}, and an amart Z_{n} that converges to zero in nearly all possible ways: $Z_{n} \longrightarrow 0$ a.e. and in L^{1}, and $Z_{\tau} \rightarrow$ 0 in L^{1}.

As a consequence of this result, and of the real amart convergence theorem [1]-the first important result involving discrete parameter amarts-we obtain

Theorem 1. Let $\mathbf{E}=\mathbf{R}$ If $\left(X_{n}, F_{n}\right)$ is an amart, then (and only then) for each increasing sequence $\tau_{n} \geqslant n$ in $T, E^{{ }^{F}} X_{\tau_{n}}-X_{n} \rightarrow 0$ a.e. and in L^{1}.

The Banach-valued Riesz decomposition is the main result of the present note. The Pettis norm of a random variable X is $\|X\|=\sup E|f(X)|$ where the supremum is over all $f \in \mathbf{E}^{\prime}$ with $|f| \leqslant 1[6]$.

A potential is an amart that converges to zero in the Pettis norm. A sequence of adapted random variables is said to be of class (B) iff $\sup _{T} E\left|X_{\tau}\right|<\infty$. We prove

Theorem 2 (Riesz decomposition). Let \mathbf{E} be a Banach space with the Radon-Nikodym property and let $\left(X_{n}, F_{n}\right)$ be an E-valued amart such that

$$
\begin{equation*}
\lim \inf E\left|X_{n}\right|<\infty . \tag{1}
\end{equation*}
$$

(i) X_{n} can be uniquely written as the sum of a martingale Y_{n} and a

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 60G40, 60G45.
 ${ }^{1}$ Research of this author is in part supported by the National Science Foundation grant MPS 72-04752A03.

