THE RIESZ DECOMPOSITION FOR VECTOR-VALUED AMARTS

BY G. A. EDGAR AND L. SUCHESTON¹

Communicated by Alexandra Bellow, April 12, 1976

Let (Ω, F, P) be a probability space, $\mathbf{N} = \{1, 2, ...\}$, and let $(F_n)_{n \in \mathbf{N}}$ be an increasing sequence of σ -algebras contained in F. A stopping time is a mapping $\tau: \Omega \longrightarrow \mathbf{N} \cup \{\infty\}$, such that $\{\tau = n\} \in F_n$ for all $n \in \mathbf{N}$. The collection of bounded stopping times is denoted by T; under the natural ordering T is a directed set 'filtering to the right'.

Let E be a Banach space and consider a sequence $(X_n)_{n \in \mathbb{N}}$ of E-valued random variables *adapted to* (F_n) , i.e., such that $X_n: \Omega \longrightarrow E$ is F_n -strongly measurable. *EX* (expectation of X) is the Pettis integral of X; $E_A X$ denotes $E(1_A \cdot X)$. The sequence (X_n) is called an *amart* iff each X_n is Pettis integrable and $\lim_T E(X_r)$ exists in the strong topology of E.

The *real* Riesz decomposition theorem for amarts [4] asserts that an amart X_n can be uniquely written as a sum of a martingale Y_n , and an amart Z_n that converges to zero in nearly all possible ways: $Z_n \rightarrow 0$ a.e. and in L^1 , and $Z_{\tau} \rightarrow 0$ in L^1 .

As a consequence of this result, and of the real amart convergence theorem [1]—the first important result involving discrete parameter amarts—we obtain

THEOREM 1. Let $\mathbf{E} = \mathbf{R}$ If (X_n, \mathcal{F}_n) is an amart, then (and only then) for each increasing sequence $\tau_n \ge n$ in T, $E^{\mathcal{F}_n} X_{\tau_n} - X_n \longrightarrow 0$ a.e. and in L^1 .

The Banach-valued Riesz decomposition is the main result of the present note. The *Pettis norm* of a random variable X is $||X|| = \sup E|f(X)|$ where the supremum is over all $f \in \mathbf{E}'$ with $|f| \le 1$ [6].

A potential is an amart that converges to zero in the Pettis norm. A sequence of adapted random variables is said to be of class (B) iff $\sup_T E|X_{\tau}| < \infty$. We prove

THEOREM 2 (RIESZ DECOMPOSITION). Let **E** be a Banach space with the Radon-Nikodym property and let (X_n, F_n) be an **E**-valued amart such that

(1)
$$\lim \inf E|X_n| < \infty$$

(i) X_n can be uniquely written as the sum of a martingale Y_n and a

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 60G40, 60G45.

 $^{^{1}}$ Research of this author is in part supported by the National Science Foundation grant MPS 72-04752A03.