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We continue in this note the description of deformation theorems for geo­
desic fields on a Riemannian manifold begun in [1] , restricting ourselves here to 
surfaces of revolution and to deformations of metric within this class. Using 
real and holomorphic Fourier transforms, we obtain in Theorem 2 an explicit 
formula for the deformation of metric corresponding to a prescribed deflection 
of geodesies. As an application, we turn again to the structure of the cut locus 
and prove 

THEOREM 1. There exists in R3 a strictly convex surface of revolution 

containing a nonempty open set of points p for which the cut locus C(p) is non-

triangulable. 

We thank Professors Robert Strichartz, Oscar Rothaus and Emil Grosswald 
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1. Geodesies on a surface of revolution. Let M be a surface of revolution 
whose metric is given in polar coordinates on the disc r < 1 by 

ds2=E(r)dr2 + r2d62. 

Then the equation of a geodesic y(t) = (r(t), 6(t)) is given explicitly [4] by 

o) e = e. + f , w dr 
° }r°rs/r2-c2 

where the quantity Ici measures the closest approach (in the r-d plane) of the 
geodesic to the origin. Note that the constant c can be computed from any small 
segment of the geodesic by Clairaut's theorem [4] : 

(2) c = r{i) sin e(Y), 

where e{t) is the angle between 7 and the meridian 0 = constant. 
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