THE EXISTENCE OF NONTRIANGULABLE CUT LOCI

by david singer and herman gluck ${ }^{1}$
Communicated by S. S. Chern, March 5, 1976
We continue in this note the description of deformation theorems for geodesic fields on a Riemannian manifold begun in [1], restricting ourselves here to surfaces of revolution and to deformations of metric within this class. Using real and holomorphic Fourier transforms, we obtain in Theorem 2 an explicit formula for the deformation of metric corresponding to a prescribed deflection of geodesics. As an application, we turn again to the structure of the cut locus and prove

Theorem 1. There exists in R^{3} a strictly convex surface of revolution containing a nonempty open set of points p for which the cut locus $C(p)$ is nontriangulable.

We thank Professors Robert Strichartz, Oscar Rothaus and Emil Grosswald for many helpful conversations.

1. Geodesics on a surface of revolution. Let M be a surface of revolution whose metric is given in polar coordinates on the disc $r \leqslant 1$ by

$$
d s^{2}=E(r) d r^{2}+r^{2} d \theta^{2}
$$

Then the equation of a geodesic $\gamma(t)=(r(t), \theta(t))$ is given explicitly [4] by

$$
\begin{equation*}
\theta=\theta_{0}+\int_{r_{0}}^{r} \frac{c \sqrt{E(r)}}{r \sqrt{r^{2}-c^{2}}} d r \tag{1}
\end{equation*}
$$

where the quantity $|c|$ measures the closest approach (in the $r-\theta$ plane) of the geodesic to the origin. Note that the constant c can be computed from any small segment of the geodesic by Clairaut's theorem [4]:

$$
\begin{equation*}
c=r(t) \sin \epsilon(t) \tag{2}
\end{equation*}
$$

where $\epsilon(t)$ is the angle between γ and the meridian $\theta=$ constant.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 53C20; Secondary 42A68.
 ${ }^{1}$ We thank the National Science Foundation for financial support.
 Copyright © 1976, American Mathernatical Suciety

