ON IDEALS OF SETS AND THE POWER SET OPERATION

BY THOMAS JECH¹ AND KAREL PRIKRY²

Communicated by S. Feferman, February 16, 1976

We present some inequalities involving cardinal powers. In most of the results we assume the existence of an ideal I satisfying a weak completeness condition.

For the remainder of this paper, I will always denote an ideal over ω_1 containing all enumerable sets. $F \subseteq P(\omega_1)$ is I-disjoint if $X \cap Y \in I$ for all distinct X, $Y \in F$; F is almost disjoint if $|X \cap Y| \leq \aleph_0$ for all distinct X, $Y \in F$. I is λ -saturated if $|F| < \lambda$ for every I-disjoint $F \subseteq P(\omega_1) - I$.

THEOREM 1. Let I be o-additive. If $2^{\aleph_0} < 2^{\aleph_1}$ and $2^{\aleph_0} < \aleph_{\omega_1}$, then for every $\lambda < 2^{\aleph_1}$ there is an almost disjoint $F \subseteq P(\omega_1) - I$ with $|F| = \lambda$. Moreover, if 2^{\aleph_1} is singular, we get such an F with $|F| = 2^{\aleph_1}$. Hence if $2^{\aleph_0} < 2^{\aleph_1}$ and $2^{\aleph_0} < \aleph_{\omega_1}$, then there exists no λ -saturated ideal for any $\lambda < 2^{\aleph_1}$.

REMARK. In [1] the same assumption on 2^{\aleph_0} is used to obtain an almost disjoint F such that $|F| = 2^{\aleph_1}$. In [3] stronger assumptions on 2^{\aleph_0} are used to show that the ideal of nonstationary sets is not \aleph_2 -saturated.

For $S \in \mathcal{P}(\omega_1) - I$, \mathcal{W} is an *I-partition* of S if \mathcal{W} is a maximal *I*-disjoint family $\subseteq \mathcal{P}(S) - I$. If \mathcal{W}_0 and \mathcal{W}_1 are *I*-partitions of S, then \mathcal{W}_1 is a refinement of \mathcal{W}_0 if every $X \in \mathcal{W}_1$ is included in some $Y \in \mathcal{W}_0$.

I is precipitous if for every $S \in P(\omega_1) - I$, and every sequence \mathcal{W}_n $(n \in \omega)$ of *I*-partitions of *S* such that \mathcal{W}_{n+1} is a refinement of \mathcal{W}_n , there exists a sequence $X_n \in \mathcal{W}_n$ such that $X_{n+1} \subseteq X_n$ and $\bigcap \{X_n : n \in \omega\} \neq 0$.

PROPOSITION. If there is a precipitous I, then there is a o-additive, normal, precipitous I. If I is normal and precipitous, then ω_1 is measurable in L[I]. If I is \aleph_2 -saturated, then I is precipitous. The ideal $\{X \subseteq \omega_1 : |X| \leq \aleph_0\}$ is not precipitous.

We shall consider a class of cardinal functions called *nice functions*. The following functions are nice: $\Phi(\alpha) = \omega_{\alpha}$; $\Phi(\alpha) =$ the α th weakly inaccessible cardinal. If Φ and ψ are nice, then so are, for example, $\psi_1(\alpha) =$ the α th fixed point of Φ ; $\psi_2(\alpha) = \Phi(\alpha + \alpha)$; $\psi_3(\alpha) = \Phi(\psi(\alpha))$.

AMS (MOS) subject classifications (1970). Primary 02K35.

¹Research supported by NSF Grant MPS75-07408.

²Research supported by NSF Grant GP-43841.

Copyright © 1976, American Mathematical Society