ON IDEALS OF SETS AND THE POWER SET OPERATION

BY THOMAS JECH ${ }^{1}$ AND KAREL PRIKRY ${ }^{2}$

Communicated by S. Feferman, February 16, 1976
We present some inequalities involving cardinal powers. In most of the results we assume the existence of an ideal I satisfying a weak completeness condition.

For the remainder of this paper, I will always denote an ideal over ω_{1} containing all enumerable sets. $F \subseteq P\left(\omega_{1}\right)$ is I-disjoint if $X \cap Y \in I$ for all distinct $X, Y \in F ; F$ is almost disjoint if $|X \cap Y| \leqslant \aleph_{0}$ for all distinct $X, Y \in F . I$ is λ-saturated if $|F|<\lambda$ for every I-disjoint $F \subseteq P\left(\omega_{1}\right)-I$.

Theorem 1. Let I be σ-additive. If $2^{\aleph_{0}}<2^{\aleph_{1}}$ and $2^{\aleph_{0}}<\aleph_{\omega_{1}}$, then for every $\lambda<2^{\aleph 1}$ there is an almost disjoint $F \subseteq P\left(\omega_{1}\right)-I$ with $\mid F=1=\lambda$. Moreover, if $2^{\aleph} 1$ is singular, we get such an F with $|F|=2^{\aleph_{1}}$. Hence if $2^{\aleph_{0}}<2^{\aleph_{1}}$ and $2^{\aleph} 0<\aleph_{\omega_{1}}$, then there exists no λ-saturated ideal for any $\lambda<2^{\aleph_{1}}$.

Remark. In [1] the same assumption on $2^{\aleph 0}$ is used to obtain an almost disjoint F such that $|F|=2^{\aleph_{1}}$. In [3] stronger assumptions on $2^{\aleph 0}$ are used to show that the ideal of nonstationary sets is not \aleph_{2}-saturated.

For $S \in P\left(\omega_{1}\right)-I, W$ is an I-partition of S if W is a maximal I-disjoint family $\subseteq P(S)-I$. If W_{0} and W_{1} are I-partitions of S, then W_{1} is a refinement of W_{0} if every $X \in \mathcal{W}_{1}$ is included in some $Y \in W_{0}$.
I is precipitous if for every $S \in P\left(\omega_{1}\right)-I$, and every sequence $W_{n}(n \in \omega)$ of I-partitions of S such that W_{n+1} is a refinement of W_{n}, there exists a sequence $X_{n} \in \mathcal{W}_{n}$ such that $X_{n+1} \subseteq X_{n}$ and $\bigcap\left\{X_{n}: n \in \omega\right\} \neq 0$.

Proposition. If there is a precipitous I, then there is a σ-additive, normal, precipitous I. If I is normal and precipitous, then ω_{1} is measurable in $L[I]$. If I is \aleph_{2}-saturated, then I is precipitous. The ideal $\left\{X \subseteq \omega_{1}:|X| \leqslant \aleph_{0}\right\}$ is not precipitous.

We shall consider a class of cardinal functions called nice functions. The following functions are nice: $\Phi(\alpha)=\omega_{\alpha} ; \Phi(\alpha)=$ the α th weakly inaccessible cardinal. If Φ and ψ are nice, then so are, for example, $\psi_{1}(\alpha)=$ the α th fixed point of $\Phi ; \psi_{2}(\alpha)=\Phi(\alpha+\alpha) ; \psi_{3}(\alpha)=\Phi(\psi(\alpha))$.

[^0]Copyright © 1976, American Mathematical Society

[^0]: AMS (MOS) subject classifications (1970). Primary 02K35.
 ${ }^{1}$ Research supported by NSF Grant MPS75-07408.
 ${ }^{2}$ Research supported by NSF Grant GP-43841.

