A LANGUAGE FOR TOPOLOGICAL STRUCTURES WHICH SATISFIES A LINDSTRÖM-THEOREM

BY M. ZIEGLER

Communicated January 26, 1976

I. The language L^t . Let L_2 be the 2-sorted first order language appropriate for structures $(\mathfrak{A}, \alpha, \epsilon)$, where \mathfrak{A} is a *L*-structure and α is a set of subsets of *A*. We call (\mathfrak{A}, α) topological if α is a topology. We call a formula of L_2 topological if it is built up using the set quantifier $\exists X$ only in the form $\exists X(t \in X \land \phi)$, *X* does not occur positively in ϕ . (*X* occurs positively in ϕ if a free occurrence of *X* in ϕ is inside the scope of an even number of negation symbols. Note. Primitive symbols are $\land, \neg, \exists x, \exists X$.) L^t is defined as the set of topological sentences of L_2 .¹

LEMMA. (a) Define $\widetilde{\beta} = \{\bigcup s | s \subset \beta\}$. Then for all $\phi \in L^t$, $(\mathfrak{A}, \beta) \models \phi$ iff $(\mathfrak{A}, \widetilde{\beta}) \models \phi$. (I.e. ϕ is invariant in the sense of Garavaglia [1].)

(b) $\widetilde{\beta}$ is a topology iff $(\mathfrak{A}, \beta) \models$ top, where top is the L^t -sentence $\forall x (\exists X \land x \in X) \land \forall x \forall X (x \in X \longrightarrow \forall Y (x \in Y$

 $\rightarrow \exists Z (x \in Z \land \forall y (y \in Z \rightarrow y \in X \land y \in Y)))).$

In the sequel "model" means "topological model".

COROLLARY (see [1]). (a) $T \subset L^t$ has a model iff $T \cup \{top\}$ is consistent (in the 2-sorted predicate calculus of L_2).

(b) The set of L^t -sentences true in all models is r.e.

(c) L^t satisfies the compactness theorem: T has a model iff every finite subset of T has a model.

(d) L^t satisfies the downward Löwenheim-Skolem theorem (L countable): If T has an infinite model, it has a "countable" model (\mathfrak{A}, α) , i.e. A countable, α having a countable base.

By the methods of the next section we can prove a Lindström-

THEOREM. Let L^* be a language for topological structures extending L^t and satisfying the compactness theorem and the downward Löwenheim-Skolem theorem. Then $L^* = L^t$.

AMS (MOS) subject classifications (1970). Primary 02B99, 02H99; Secondary 02G05, 54J05, 54D10.

¹I have seen, that L^t was first considered for topological spaces by T. A. McKee in two articles in the Z. Math. Logik Grundlagen Math. 21 (1975), 405-408 and ibid. (1976).