RESULTANTS OF MATRIX POLYNOMIALS

BY I. C. GOHBERG AND L. E. LERER
Communicated by Chandler Davis, February 24, 1976

The $(n+m) \times(n+m)$ matrix
is called the resultant matrix of the two polynomials $a(\lambda)=a_{0}+a_{1} \lambda+\cdots+$ $a_{n} \lambda^{n}$ and $b(\lambda)=b_{0}+b_{1} \lambda+\cdots+b_{m} \lambda^{m}\left(a_{j}, b_{j}, \epsilon \mathbf{C}^{1}, a_{n} \neq 0, b_{m} \neq 0\right)$. The determinant of this matrix is called the resultant of the polynomials $a(\lambda)$ and $b(\lambda)$. The following classical theorem on resultants is well known: The number of common roots (counting multiplicities) of the polynomials $a(\lambda)$ and $b(\lambda)$ is equal to $\operatorname{dim} \operatorname{Ker} R(a, b)$.

This statement does not admit a straightforward generalization to matrix polynomials [1], if the same definition of the resultant matrix $R(a, b)$ is used as in the one-dimensional case. For example the matrix

$$
R\left(\left(\begin{array}{cc}
\lambda-1 & 0 \\
1 & \lambda-1
\end{array}\right),\left(\begin{array}{cc}
\lambda & 1 \\
0 & \lambda-2
\end{array}\right)\right)
$$

is not invertible although the polynomial matrices do not have common eigenvalues, and the matrix

$$
R\left(\left(\begin{array}{cc}
\lambda+1 & 0 \\
1 & \lambda
\end{array}\right),\left(\begin{array}{ll}
\lambda & -1 \\
0 & \lambda+1
\end{array}\right)\right)
$$

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 15A54; Secondary 15A24.
 Key words and phrases. Linear algebra, resultant, matrix polynomial, resultant matrix, λ-matrix, common eigenvalue, multiplicity of a common eigenvalue.

