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The (n + m) x (n + m) matrix 

R(a, b) = an a* 
b0 bx 

b0 bt 

b0 bx J 
is called the resultant matrix of the two polynomials a(X) = a0 + axX 4- * • • + 
anX

n and b(X) = b0 +bt\ + + bm\n (af,bf,eCl,an ¥= 0, bm * 0). The 
determinant of this matrix is called the resultant of the polynomials a(X) and 
b(X). The following classical theorem on resultants is well known: The number 
of common roots (counting multiplicities) of the polynomials a(X) and b(X) is 
equal to dim Ker R(a, b). 

This statement does not admit a straightforward generalization to matrix 
polynomials [1], if the same definition of the resultant matrix R(af b) is used 
as in the one-dimensional case. For example the matrix 

R (1 1 X - l j ' V O * - 2 j ) 
is not invertible although the polynomial matrices do not have common eigen
values, and the matrix 

*er mi iu) 
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