4. F. W. Gehring, A study of α -variation. I, Trans. Amer. Math. Soc. 76 (1954), 420-443. MR 16, 364.

5. D. G. Larman, Subsets of given Hausdorff measure in connected spaces, Quart. J. Math. Oxford Ser. (2) 17 (1966), 239-243. MR 34 #1479.

6. E. R. Love and L. C. Young, Sur une classe de fonctionnelles linéaires, Fund. Math. 28 (1937), 243-257.

7. S. J. Taylor, Exact asymptotic estimates of Brownian path variation, Duke Math. J. 39 (1972), 219-241. MR 45 #4500.

8. H. Tietz, Permanenz- und Taubersätze bei pV-Summierung, J. Reine Angew. Math. 260 (1973), 151–177. MR 48 #754.

9. N. Wiener, The quadratic variation of a function and its Fourier coefficients, J. Math. Physics 3 (1924), 72–94.

10. L. C. Young, An inequality of Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), 251-282.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48109

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PARIS, ORSAY, FRANCE

F. W. GEHRING

BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 82, Number 4, July 1976

Commutative formal groups, by Michel Lazard, Lecture Notes in Mathematics, vol. 443, Springer-Verlag, Berlin, Heidelberg, New York, 1975, 236 pp., \$9.90.

This is the book we have been waiting for ever since P. Cartier's pair of notes in the Comptes Rendus of 1967. In these, Cartier sketched a thoroughgoing extension of the Dieudonné theory that had already classified commutative formal groups over a perfect field of characteristic p, in terms of modules over a certain noncommutative ring. But Cartier left the job of exposition unfinished, and Lazard has done us the service of organizing the material, filling in all the details, and adding a quantity of his own results, so that we finally have a basic reference on this aspect, probably the central aspect, of the theory of commutative formal groups.

An *n*-dimensional (coordinatized) formal group is simply an *n*-tuple $\mathbf{F} = (F_1, \ldots, F_n)$ of formal power series, subject to a single condition expressing a kind of associativity. Here, $F_i = F_i(\mathbf{x}, \mathbf{y}), \mathbf{x} = (x_1, \ldots, x_n), \mathbf{y} = (y_1, \ldots, y_n)$; and x_1, \ldots, y_n are 2*n* independent indeterminates. For instance, the expansion at the origin of the group law of an *n*-dimensional complex analytic Lie group gives rise to such series, once a coordinate system is chosen; the standard coordinatization of the one-dimensional multiplicative Lie group \mathbf{C}^* , for example, gives the single power series F(x, y) = x + y + xy.

The advantage in talking about formal groups rather than local groups is that the single relation of associativity F(F(x, y), z) = F(x, F(y, z)) makes sense algebraically, in the ring of formal power series A[[x, y, z]], where A is any commutative ring whatever. We need not restrict ourselves to the groundrings C and R, not even to topological rings, and can now ask the relationship between Lie algebras over the ring A and formal groups over A. We then find that if A is a Q-algebra, i.e. if every positive integer is invertible in A, then the categories of finite-dimensional Lie algebras over A and of