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The most useful form of the spectral theorem asserts that every bounded 
normal operator on a complex Hubert space is unitarily equivalent to a multipli­
cation operator. In this note we report a (verbatim) generalization of that theo­
rem to nonlinear operators. While the need for this result arose in attempting to 
define "spectral" invariants for nonlinear random processes [1], it appears to be 
a basic statement in operator theory which may be applicable elsewhere. 

Let H and K be (separable) complex Hubert spaces. By a bounded holo-

morphic operator from H to K we mean a mapping F: H —• K which satisfies 
0) SUp | | 2 | | < 1 | |F(2) | |<oo, 

(ii) for every zx, . . . , zn in H and every w G K, 

(F(a1z1 + • • • +anzn), w) 

defines an entire function of the n complex variables ax, . . . , an. 

Every linear operator is of course holomorphic. More generally, if F is a 
monomial in the sense that it has the form F(z) = G(z, z, . . . , z), where G is a 
bounded «-linear operator from H x • - - x H into K, then F i s holomorphic. 

Linear spectral theory applies to operators from H into itself. In the non­
linear (holomorphic) case, the appropriate range space is not H but the Fock 
space over H, which we will write as e^: 

e*= tf°© tf1 0H2 e - - - , 

where H° = C and Hn is the symmetric Hilbert space tensor product of n copies 
of H, n > 1. A key feature of this construction is that there is a natural repre­
sentation ir of the full unitary group U(H) of H as unitary operators on eK For 
each unitary U on H, TI(U) is defined as U° 0 U1 0 U2 0 • • • , where U° = 1 
and If1 is the n-fold tensor product of copies of U. This representation has been 
studied in some detail by Irving Segal in connection with the mathematical de­
scription of quantum systems having infinitely many degrees of freedom [2], 
[3]. It also plays an essential role in the following considerations. 

A linear operator is normal iff it belongs to an abelian von Neumann alge­
bra. This property can be generalized to bounded holomorphic operators F: H 

—• e^ as follows. We will say that F commutes with a unitary U in U(H) if 
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