MARKOV PROCESSES ON MANIFOLDS OF MAPS

BY PETER BAXENDALE

Communicated by Daniel W. Stroock, January 2, 1976

- 1. Introduction. In this note we describe a construction of a Markov process on a manifold of maps starting from a Gaussian measure on the space of sections of an associated vector bundle. Let S be a compact metric space of finite metric dimension and M a smooth complete finite dimensional Riemannian manifold. Our basic construction gives a family $\{v_t\colon t\geq 0\}$ of Borel probability measures on the space $C(S\times M,M)$ of continuous functions from $S\times M$ to M with the compact-open topology. The multiplication (f,g)(s,m)=f(s,g(s,m)) for $f,g\in C(S\times M,M)$ makes $C(S\times M,M)$ into a topological semigroup with identity. Then $v_t*v_s=v_{t+s}$ for $s,t\geq 0$ and the right translates of the v_t give transition probabilities for a Markov process on $C(S\times M,M)$ with continuous sample paths. The left action of $C(S\times M,M)$ on C(S,M) induces a Markov process on $C(S\times M,M)$ on C(S,M) with transition probability $v_{t,g}=$ image of v_t under the action of $C(S\times M,M)$ on $g\in C(S,M)$.
- 2. Statement of results. Let ξ denote the product bundle $S \times TM \longrightarrow S \times M$ and $C(\xi)$ the space of continuous sections of ξ . Given a Gaussian measure μ of mean zero on $C(\xi)$, define

$$Q(s, x, t, y) = \int f(s, x) \otimes f(t, y) d\mu(f) \in T_x M \otimes T_y M$$
 for all $s, t \in S$, $x, y \in M$.

Q is a reproducing kernel for the bundle ξ (see Baxendale [1]) and determines μ uniquely. Let $X \in C(\xi)$.

For a closed isometric embedding of M inside some Euclidean space V, let h(x) denote the second fundamental form for $M \subset V$ at $x \in M$. Using the natural inclusion $T_x M \subset V$ and orthogonal projection $V \longrightarrow T_x M$, we think of X, Q and h taking values in V and its various tensor products.

Theorem 1. Suppose there exists a closed isometric embedding $M \subseteq V$ such that (i) h is bounded and uniformly Lipschitz with respect to the metric on M induced from V.

Suppose moreover that there exist a Gaussian measure μ on $C(\xi)$, $X \in C(\xi)$ and $\alpha > 0$, C > 0 such that

AMS (MOS) subject classifications (1970). 58B20, 58D15, 60H10, 60J35.