ON STOPPING TIME DIRECTED CONVERGENCE

BY ARYEH DVORETZKY

Communicated by Alexandra Bellow, December 31, 1975

The main purpose of this note is to introduce the notion of \overline{S} -martingales, a certain modification of that of asymptotic martingales, the main justification of which is III.

1. S-convergence. Let (Ω, F, P) be a probability; (F_n) (n = 1, 2, ...), a nondecreasing sequence of measurable σ -fields and (X_n) an adapted sequence of extended real-valued r.v. (random variables). (If the F_n are not mentioned explicitly then any F_n with the above properties will do; in particular, we may take F_n to be the σ -field generated by X_1, \ldots, X_n .) Let $T = \{t\}$ be the family of bounded stopping times; i.e. the family of positive, bounded, integer-valued r.v. t with $t^{-1}(n) \in F_n$ for all n. T is a directed set filtering to the right under the relation $t_1 \leq t_2$, i.e. $t_1(\omega) \leq t_2(\omega)$ a.s. (almost surely). The r.v. X_t for $t \in T$, is defined by $X_t(\omega) = X_{t(\omega)}(\omega)$.

DEFINITION. Let ϕ map X_t $(t \in T)$ into a topological space M. Then $(\phi(S_n))$ is said to be *S*-convergent—or stopping time directed convergent—(to Y) if the directed set $\phi(X_t)$ is convergent in the topology of M (to Y).

S-convergence implies ordinary convergence, but not vice-versa.

EXAMPLES. (1) ϕ the identity mapping, *M* the space of all extended real valued r.v. topologized by convergence in probability (for extended real valued r.v. this is interpreted as applied to the r.v. obtained through the mapping $x \rightarrow x/(1 + |x|)$). We then speak of *S*-convergence in probability. In sharp distinction from the situation in ordinary convergence, we have

I. S-convergence in probability is equivalent to a.s. convergence.

The proof is immediate since there exist $t_1 < \cdots < t_n < \cdots \rightarrow \infty$ with $X_{t_n} \xrightarrow{a.s} \limsup X_{t_n} = \limsup X_n$.

(2) (X_n) is said to be an *S*-martingale if the expectations (finite or not) EX_t are defined for all $t \in T$ and (EX_n) is *S*-convergent (to a finite or infinite number). If the limit is a finite number then (X_n) is called an asymptotic martingale.

The argument proving I yields

II. A uniformly bounded sequence of r.v. (X_n) is a.s. convergent iff it is an asymptotic martingale.

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 60G40, 60G45; Secondary 28A65, 28A20.