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The main purpose of this note is to introduce the notion of S-martingales, 
a certain modification of that of asymptotic martingales, the main justification of 
which is III. 

1. S-convergence. Let (£2, F, P) be a probability; (Fw) (n = 1, 2, . . . ), 
a nondecreasing sequence of measurable a-fields and (Xn) an adapted sequence 
of extended real-valued r.v. (random variables). (If the F n are not mentioned 
explicitly then any F n with the above properties will do; in particular, we may 
take Fw to be the a-field generated by Xl9 . . . , Xn.) Let T = {t} be the fami­
ly of bounded stopping times; i.e. the family of positive, bounded, integer-valued 
r.v. t with t"~l(n) E Fw for all n. T is a directed set filtering to the right under 
the relation tx < f2, i.e. tt(co) < t2(co) a.s. (almost surely). The r.v. Xt for 
t G T, is defined by Xt(co) = Xf(w)(co). 

DEFINITION. Let 0 map Xt (t ET) into a topological space M. Then 
(<KSn)) is said to be S-convergent—ox stopping time directed convergent—(to Y) 
if the directed set 0(X,) is convergent in the topology of M (to Y). 

S-convergence implies ordinary convergence, but not vice-versa. 
EXAMPLES. (1) <t> the identity mapping, M the space of all extended real 

valued r.v. topologized by convergence in probability (for extended real valued 
r.v. this is interpreted as applied to the r.v. obtained through the mapping x —• 
x/(l 4- |x|)). We then speak of S-convergence in probability. In sharp distinc­
tion from the situation in ordinary convergence, we have 

I. S-convergence in probability is equivalent to a.s. convergence. 
The proof is immediate since there exist tx < • • • < tn < • • • —• °° with 

Xt -̂ > lim sup Xf = lim sup X„. ln ln " 

(2) (Xn) is said to be an S-martingale if the expectations (finite or not) 
EXt are defined for all * G T and (EXn) is 5-convergent (to a finite or infinite 
number). If the limit is a finite number then (Xn) is called an asymptotic 
martingale. 

The argument proving I yields 
II. A uniformly bounded sequence of r.v. (Xn) is a.s. convergent iff it is 

an asymptotic martingale. 
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