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The augmented Teichmiiller space T, of a finitely generated Fuchsian group 
G of the first kind or a conformally finite Riemann surface S with signature, 
consists of the usual Teichmiiller space T together with the regular Z?-groups on 
its boundary. The structure of the regular Z?-groups has been studied in [2] (see 
also Marden [5] and Maskit [6] ). The usual topology on T given by the Bers 
embedding of T in the space of bounded quadratic differentials has a natural 
extension to T. The extension corresponds to horocycles at the regular Z?-groups. 
It is discussed in §2. Some of the properties of T with this topology are listed 
below. Detailed proofs will appear elsewhere. A related study is being conducted 
by Earle and Marden. 

1. Properties of T. 

THEOREM 1. Each element g of the Teichmiiller modular group, Mod, has 

a continuous extension to an automorphism of T. 

The proof of Theorem 1 follows from explicit construction of quasiconform-

al mappings realizing twist maps and transpositions. 

THEOREM 2. The augmented Riemann space R = T/Mod is a compact 

normal complex space. It is the unique compactification of R = T/Mod in the 

sense of Carton. 

The proof utilizes a correspondence between congruence classes of regular 
^-groups and flags of subgroups of Mod. The uniqueness of the compactification 
together with results due to Bers [3] immediately yield 

THEOREM 3. R is a projective algebraic variety. 

By studying divergent sequences in T, we may prove the following conjec

ture of Ehrenpreis [4] . 

THEOREM 4. If T is given some Bers embedding, then the action of Mod 
is of the first kind (i.e. for each if E dT, each Euclidean neighborhood Nofy 
and each n, there is some yl EN Ci T whose orbit meets N in at least n points). 

AMS (MOS) subject classifications (1970). Primary 32G15; Secondary 14H15, 20H10, 
30A58. 

1 Research partially supported by the National Science Foundation. The author is 
currently a Fellow of the Alfred P. Sloan Foundation. 

Copyright © 1976, American Mathematical Society 

333 


