AUGMENTED TEICHMÜLLER SPACES

BY WILLIAM ABIKOFF¹

Communicated by Robert Fossum, December 12, 1975

The augmented Teichmüller space \hat{T} , of a finitely generated Fuchsian group G of the first kind or a conformally finite Riemann surface S with signature, consists of the usual Teichmüller space T together with the regular *b*-groups on its boundary. The structure of the regular *b*-groups has been studied in [2] (see also Marden [5] and Maskit [6]). The usual topology on T given by the Bers embedding of T in the space of bounded quadratic differentials has a natural extension to \hat{T} . The extension corresponds to horocycles at the regular *b*-groups. It is discussed in §2. Some of the properties of \hat{T} with this topology are listed below. Detailed proofs will appear elsewhere. A related study is being conducted by Earle and Marden.

1. Properties of \hat{T} .

THEOREM 1. Each element g of the Teichmüller modular group, Mod, has a continuous extension to an automorphism of \hat{T} .

The proof of Theorem 1 follows from explicit construction of quasiconformal mappings realizing twist maps and transpositions.

THEOREM 2. The augmented Riemann space $\hat{R} = \hat{T}/Mod$ is a compact normal complex space. It is the unique compactification of R = T/Mod in the sense of Cartan.

The proof utilizes a correspondence between congruence classes of regular b-groups and flags of subgroups of Mod. The uniqueness of the compactification together with results due to Bers [3] immediately yield

THEOREM 3. \hat{R} is a projective algebraic variety.

By studying divergent sequences in \hat{T} , we may prove the following conjecture of Ehrenpreis [4].

THEOREM 4. If T is given some Bers embedding, then the action of Mod is of the first kind (i.e. for each $\varphi \in \partial T$, each Euclidean neighborhood N of φ and each n, there is some $\varphi_1 \in N \cap T$ whose orbit meets N in at least n points).

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 32G15; Secondary 14H15, 20H10, 30A58.

 $^{^1}$ Research partially supported by the National Science Foundation. The author is currently a Fellow of the Alfred P. Sloan Foundation.