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I consider the following parabolic equation 

(1) ut = div A(x, t, u, ux) + B(x, t, u, ux) 

where A , B are respectively, vector and scalar valued measurable functions satis
fying the structure conditions 

\A(x, t,u,p)\<at\p\ +a2\u\ + a 3 , \B(x, ty u, p)\ < bx \p\ + b\\u\ + ftf, 
(2) 

p • A(x, t, u, p) > cx\p\2 - c\\u\2 - c\9 

where av cx are positive constants, and all of the remaining coefficients af, bp 

Cj are in L p , q for some pair of numbers (p, q) satisfying p > 2/(1 - 0); n/p + 
2/q < 1 - 0, where 0 is a positive constant, 0 < 0 < 1. This is precisely the 
equation studied by Aronson and Serrin [1] and is very similar to that studied 
by Trudinger [ 7 ] . 

We consider weak solutions from the class V2 in cylinders Q = £2 x (0, T) 
where SI C Rn is a bounded domain. V2(Q) is defined to be the space of meas
urable functions u which have finite norm 

Hull = ess sup \ f \u(x, t)\2 dxW2 + E l l l ^ l U , ^ 

where {du/bxi}iz=:1 n are the weak (i.e. distributional) derivatives of u. We 
define V$(Q) to be the colsure in || • 11^2(0)' °f functions in C°°(Q) which van
ish in a neighborhood of the parabolic boundary 3 Q = fi U {912 x [0, T]}. 
We say that w G V2(Q) is a weak solution to (1) if fytu - y x • .4(x, f, w, ux) + 
<0#(x, £, w, ux) = 0 for every function \p E C ~ ( ô ) . 

The Maximum Principle for such equations (Aronson and Serrin [1 , Theo
rem 1 ] , can be generalized to the notion of weak boundary values as follows. 

THEOREM . If u £ VQ(Q) is a weak solution to (I) then almost everywhere 
in Q we have 

Mx, 01 < C(\\b3\\
2
Piq + \\c3\\p>q) 
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