ON THE TAMAGAWA NUMBER OF QUASI-SPLIT GROUPS

BY K. F. LAI ${ }^{1}$
Communicated by H. Rossi, December 1, 1975

1. Introduction. In this paper we give a formula for the Tamagawa number $\tau(G)$ (see [6]) of a connected semisimple quasi-split algebraic group G defined over an algebraic number field F. The method used is that of R. P. Langlands (see [2]).

Let \mathbf{A} be the adeles of $F ; G_{\mathrm{A}}$ the locally compact adele group of G in which the group G_{F} of F-rational points is embedded.

Let B be the Borel subgroup of G defined over F, and A the maximal torus of B defined over $F . \quad \tau(A)$ is the Tamagawa number of $A . L_{F}$ (resp. L_{F}^{+}) denotes the lattice of F-rational weights of G (resp. of the simply-connected form of G). Let c be the index $\left[L_{F}^{+}: L_{F}\right.$]. Then the main formula is

Theorem. $\tau(G)=c \tau(A)$.
2. Sketch of the proof. Let P be the orthogonal projection of $L^{2}\left(G_{F} \backslash G_{\mathrm{A}}\right)$ onto the space of constant functions. Langlands [2] observes the simple relation:

$$
\begin{equation*}
(1,1)\left(P \varphi^{\sim}, P \psi^{\sim}\right)=\left(\varphi^{\sim}, 1\right)\left(1, \psi^{\sim}\right) \tag{1}
\end{equation*}
$$

where $\varphi^{\sim}, \psi^{\sim} \in L^{2}\left(G_{F} \backslash G_{\mathbf{A}}\right)$ and (\cdot, \cdot) is the inner product on $L^{2}\left(G_{F} \backslash G_{\mathbf{A}}\right)$. As

$$
\begin{equation*}
(1,1)=\int_{G_{F} \backslash G_{\mathbf{A}}} d g \tag{2}
\end{equation*}
$$

the problem reduces to the computation of the remaining three terms in (1).
Let $G_{\infty}=\Pi_{v \mid \infty} G_{F_{v}}$ where F_{v} is the completion of F at the place v and " $v \mid \infty$ " means that v is infinite. Let K_{∞} be the maximal compact subgroup of G_{∞}, and $K_{0}=\Pi_{v<\infty} G_{0_{v}}$ where " $v<\infty$ " means that v is finite, O_{v} is the maximal compact subring of F_{v} and $G_{O_{v}}$ is the compact subgroup of $G_{F_{v}}$ consisting of elements with coefficients in O_{v} and whose determinants are units. Put

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 20G30, 20G35; Secondary 12A70, $12 \mathrm{~A} 80,10 \mathrm{D} 20,32 \mathrm{~N} 10,43 \mathrm{~A} 85$.

 Key words and phrases. Computation of Tamagawa number, quasi-split algebraic group, Langland's calculation of fundamental domain, L-function, torus, Eisenstein series, Weil's conjecture ${ }_{i}$

 This paper is based on the author's Ph. D. dissertation, written at Yale University under Professor G. D. Mostow. The problem and the approach were suggested by R. P. Langlands.

