ITERATED LOOP FUNCTORS AND THE HOMOLOGY OF THE STEENROD ALGEBRA

BY WILLIAM M. SINGER¹

Communicated by S. Eilenberg, November 3, 1975

Let A be the mod-2 Steenrod algebra. For any unstable A-module M the "unstable homology groups" $H_{s,k}^{A}(M) = \operatorname{Tor}_{s,k}^{A}(M)$ are defined by means of unstable projective resolutions of M [2]. We describe here a new approach to the problem of computing these groups.

Let M_A be the category whose objects are unstable A-modules and whose morphisms are degree preserving A-maps. For M in M_A and x in M_n we write, as is usual $\operatorname{Sq}_a x = \operatorname{Sq}^{n-a} x$. Let "suspension" $S: M_A \to M_A$ be the functor that raises degree by 1. S has a left adjoint $\Omega: M_A \to M_A$ [2] given by $(\Omega M)_n =$ $(\operatorname{coker} \operatorname{Sq}_0)_{n+1}$, with A-action induced by that on M. The left derived functors Ω_s ($s \ge 0$) of Ω are defined in the usual way: given M in M_A one forms a projective resolution $\cdots \to P_1(M) \to P_0(M) \to M \to 0$. Then $\Omega_s M$ is the sth homology group of the complex $\cdots \to \Omega P_1(M) \to \Omega P_0(M) \to 0$. The left derived functors of Ω are completely understood [1], [2], [3]. In fact,

(1)
$$\Omega_s M = 0 \quad \text{if } s > 1,$$

(2)
$$(\Omega_1 M)_{2n-1} = (\ker \operatorname{Sq}_0)_n$$

with A-action given by $\operatorname{Sq}_a \Omega_1 x = \Omega_1 \operatorname{Sq}_{(a+1)/2}$ for x in ker Sq_0 .

Consider now the k-fold iterate Ω^k of Ω . We pose:

PROBLEM (*). Give a workable description of the left derived functors Ω_s^k of Ω^k , for all $s \ge 0$.

Our interest in these derived functors stems from the fact that their zerodimensional components are the unstable homology groups of the Steenrod algebra:

THEOREM 1. There is a natural isomorphism $\operatorname{Tor}_{sk}^{A}(M) = (\Omega_{sk}^{k}M)_{0}$.

Our interest in Problem (*) is heightened by the fact that it appears to be solvable: there is a simple relation between the derived functors of Ω^k and those of Ω^{k-1} .

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 55G10, 55H15; Secondary 18G10, 18H15.

¹ Research partially supported by NSF grant MPS 75-08278.