COMPONENT PROPERTIES OF SECOND ORDER LINEAR SYSTEMS

BY SHAIR AHMAD AND A. C. LAZER
Communicated by François Treves, October 16, 1975

Consider the second order linear system

$$
\begin{equation*}
x^{\prime \prime}+A(t) x=0 \tag{1}
\end{equation*}
$$

where $A(t)$ is an n-by- n continuous matrix. Disconjugacy and other Sturm-type properties of solutions of (1) have been studied by a number of people (see e.g. [1]-[4]). Virtually no study has been made of the sign properties of the individual components of solutions of (1). It appears that such a study would be of interest not only from a theoretical point of view but also from a more practical point of view. We announce some results along this line, which are obtained under certain conditions on the matrix $A(t)$. For definitions and basic concepts one might consult [1] and [4].

Theorem 1. Let $A(t)=\left(a_{i j}(t)\right)$ be symmetric with $a_{i j}(t) \geqslant 0$ whenever $i \neq$ j and $t \in[a, b]$, where b is the first conjugate point of a. Then there exists a nontrivial solution $u(t)=\operatorname{col}\left(u_{1}, \ldots, u_{n}\right)$ of (1) with $u(a)=u(b)=0$, and $u_{k}(t) \geqslant 0$ on $[a, b], k=1, \ldots, n$.

The converse of Theorem 1 holds in the following sense.
Theorem 2. Assume that $A(t)=\left(a_{i j}(t)\right)$ is positive definite on (a, b) except at isolated points. If $a_{i j}(t)>0$ on (a, b), and if there exists a nontrivial solution $y(t)=\operatorname{col}\left(y_{1}, \ldots, y_{n}\right)$ of (1) with $y(a)=y(b)=0$ and $y_{i}(t) \geqslant 0, i=$ $1, \ldots, n$, on (a, b), then b is the first conjugate point of a.

We recall that an n-by- n matrix $A=\left(a_{i j}\right)$ is called irreducible if it is impossible to have $\{1,2, \ldots, n\}=I \cup J, I \cap J=\varnothing, I \neq \varnothing \neq J$, and $a_{i j}=0$ for all $i \in I, j \in J$.

Theorem 3. Let $A(t)=\left(a_{i j}(t)\right)$ such that $\left.a_{i j}(t)\right) \geqslant 0$ on $[a, b]$ and $A\left(t_{0}\right)$ is irreducible for some $t_{0} \in(a, b)$. If $y(t)=\operatorname{col}\left(y_{1}, \ldots, y_{n}\right)$ is a nontrivial solution of (1) such that $y(a)=y(b)=0$ and $y_{i}(t) \geqslant 0$ on $(a, b), i=1, \ldots, n$, then $y_{i}^{\prime}(a)>0, y_{i}^{\prime}(b)<0$ and $y_{i}(t)>0$ on $(a, b), i=1, \ldots, n$. Moreover, if $w(t)$ is any solution of (1) with $w(a)=w(b)=0$, then $w(t)=\alpha y(t)$ for some constant α.

