ON THE NONTRIVIALITY OF SOME GROUP EXTENSIONS GIVEN BY GENERATORS AND RELATIONS

BY O. S. ROTHAUS¹

Communicated by James Bramble, October 30, 1975

Let G be any group, $F = F(x_1, x_2, \ldots, x_n)$ the free group on n generators. Consider the group presentation $H = G^*F/R_1, R_2, \ldots, R_n$, where each relation R_i is a product of conjugates, by elements of G, of elements of F:

$$R_i = \prod_{v} g(i, v) x_{\alpha(i,v)}^{r(i,v)} g^{-1}(i, v).$$

Then G injects into H, and we want to know when H is genuinely larger than G. A criterion will be framed in terms of the Fox matrix, E, of the presentation:

$$(E)_{i,j} = \sum_{v} r(i, v)g(i, v)$$

where the sum is over those v for which $\alpha(i, v) = j$. The assumption that H = G implies by a formal argument (or use of Fox free differential calculus) that E is invertible matrix over $\mathbf{Z}(G)$; to avoid this trivial case, we will assume $E \in GL(n, \mathbf{Z}(G))$.

E may equally well be written $E = \Sigma M(g)g$, each $M(g) \in M(n, \mathbb{Z})$. For any finite dimensional representation ρ of G we define $\rho(E) = \Sigma M(g) \otimes \rho(g)$. Note that det $1(E) = \pm 1$.

Let A be the subgroup of GL(n, R(G)) generated by squares and commutators. Our main result is

THEOREM 1. Assume G finite, det 1(E) = 1, and n odd. If $E \notin \bigcup_{g \in G} \{Ag\}$ then G injects properly into H.

(The case n even can be reduced to the preceding by adding a free generator to H and a relation which kills it.)

The proof needs several preliminary considerations. Let L be a compact connected Lie group of rank m, dimension d, and L its Lie algebra. Let φ be any homomorphism of G into L; Ad φ is then a representation of G on L. By $\varphi(R_i)$ we mean the relation R_i with elements of G therein occurring replaced by their images under φ . Consider the map $f: L^n \to L^n$ given by $f_i(x_1, x_2, \ldots, x_n) = \varphi(R_i) \cdot x_i$. The identity element of L^n is a fix point of f; another fix point of f assures H is larger than G.

AMS (MOS) subject classifications (1970). Primary 20F05, 20F10; Secondary 55B15, 57F10.

¹ This research was partly supported by NSF GP 28251.