ON THE NONTRIVIALITY OF SOME GROUP EXTENSIONS GIVEN BY GENERATORS AND RELATIONS

BY O. S. ROTHAUS ${ }^{1}$
Communicated by James Bramble, October 30, 1975

Let G be any group, $F=F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ the free group on n generators. Consider the group presentation $H=G^{*} F / R_{1}, R_{2}, \ldots, R_{n}$, where each relation R_{i} is a product of conjugates, by elements of G, of elements of F :

$$
R_{i}=\prod_{v} g(i, v) x_{\alpha(i, v)}^{r(i, v)} g^{-1}(i, v) .
$$

Then G injects into H, and we want to know when H is genuinely larger than G. A criterion will be framed in terms of the Fox matrix, E, of the presentation:

$$
(E)_{i, j}=\sum_{v} r(i, v) g(i, v)
$$

where the sum is over those v for which $\alpha(i, v)=j$. The assumption that $H=G$ implies by a formal argument (or use of Fox free differential calculus) that E is invertible matrix over $\mathbf{Z}(G)$; to avoid this trivial case, we will assume $E \in$ $\mathrm{GL}(n, \mathbf{Z}(G))$.
E may equally well be written $E=\Sigma M(g) g$, each $M(g) \in M(n, \mathbf{Z})$. For any finite dimensional representation ρ of G we define $\rho(E)=\Sigma M(g) \otimes \rho(g)$. Note that $\operatorname{det} 1(E)= \pm 1$.

Let A be the subgroup of $\mathrm{GL}(n, \mathbf{R}(G))$ generated by squares and commutators. Our main result is

Theorem 1. Assume G finite, $\operatorname{det} 1(E)=1$, and n odd. If $E \notin \bigcup_{g \in G}\{A g$. then G injects properly into H.
(The case n even can be reduced to the preceding by adding a free generator to H and a relation which kills it.)

The proof needs several preliminary considerations. Let L be a compact connected Lie group of rank m, dimension d, and L its Lie algebra. Let φ be any homomorphism of G into $L ; \operatorname{Ad} \varphi$ is then a representation of G on L. By $\varphi\left(R_{i}\right)$ we mean the relation R_{i} with elements of G therein occurring replaced by their images under φ. Consider the map $f: L^{n} \rightarrow L^{n}$ given by $f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $\varphi\left(R_{i}\right) \cdot x_{i}$. The identity element of L^{n} is a fix point of f; another fix point of f assures H is larger than G.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 20F05, 20F10; Secondary 55B15, 57 F 10.

 1 This research was partly supported by NSF GP 28251.

