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Let G be any group, F = F(xx, x2> . . . , xn) the free group on n genera

tors. Consider the group presentation H = G*F/RV R2, . . . , Rn, where each 

relation Rt is a product of conjugates, by elements of G, of elements of F: 

Then G injects into H, and we want to know when H is genuinely larger than G. 

A criterion will be framed in terms of the Fox matrix, E, of the presentation: 

V 

where the sum is over those v for which a(i, v) = ƒ. The assumption that H = G 

implies by a formal argument (or use of Fox free differential calculus) that E is 

invertible matrix over Z(G); to avoid this trivial case, we will assume E E 

GLfa KG)). 

E may equally well be written E = XM(g)g9 each M(g) E M(n, Z). For any 

finite dimensional representation p of G we define p(E) = 2Af(g) ® p(g). Note 

tha tde t l (£ ) = ± l . 

Let 4̂ be the subgroup of GL(«, R(G)) generated by squares and commu

tators. Our main result is 

THEOREM 1. Assume G finite, det 1(E) = 1, and n odd. If E £ U^ec? i^g'. 
then G injects properly into H. 

(The case n even can be reduced to the preceding by adding a free genera

tor to H and a relation which kills it.) 

The proof needs several preliminary considerations. Let L be a compact 
connected Lie group of rank m, dimension d, and L its Lie algebra. Let <p be any 
homomorphism of G into L; Ad </? is then a representation of G on t . By ip(Rj) 

we mean the relation Ri with elements of G therein occurring replaced by their 
images under <p. Consider the map ƒ: Ln —> Ln given by fi(xl, x2, . . . , *w) = 
¥?(/*/) * *f The identity element of Ln is a fix point of/; another fix point of ƒ 
assures H is larger than G. 
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