PARTIAL AND COMPLETE CYCLIC ORDERS

BY NIMROD MEGIDDO

Communicated by A. Householder, November 3, 1975

We show that, in contrast to a famous theorem on linear orders, not every partial cyclic order on $M = \{1, \ldots, m\}$ can be extended to a complete cyclic order. In fact, the complexity, in a certain sense, of sufficient conditions for such an extendability increases rapidly with m.

DEFINITION 1. (i) Two linear orders, (a_1, \ldots, a_m) and (b_1, \ldots, b_m) , on *M* are called *cyclically equivalent* if there exists $k \in M$ such that $[j-1 \equiv (i-1+k) \pmod{m}] \Rightarrow a_i = b_i$.

(ii) A complete cyclic order (CCO) on M is an equivalence class C of linear orders modulo cyclic equivalence; denote $a_1a_2 \cdots a_m$ for the equivalence class containing (a_1, a_2, \ldots, a_m) .

DEFINITION 2. A partial cyclic order (PCO) on M is a set Δ of cyclically ordered triples (COTs) out of M such that:

(i) $xyz \in \Delta \Rightarrow zyx \notin \Delta$ ("antisymmetry"),

(ii) { xyz, xzw} $\subset \Delta \Rightarrow xyw \in \Delta$ ("transitivity");

since xyz = zxy, etc., also $yzw \in \Delta$ is implied.

THEOREM 3. (i) If C is a CCO then the set Δ of all COTs derived from C is a PCO. (ii) If Δ is a saturated PCO, i.e., $\{x, y, z\} \in \binom{M}{3}$ & $xyz \notin \Delta \Rightarrow zyx \notin \Delta$, then there exists a CCO from which all of Δ 's COTs are derived; Δ is then said to be extendable to a CCO.

COROLLARY 4. A PCO is extendable to a CCO if and only if it is contained in a saturated PCO.

It is natural to ask whether every PCO is extendable to a CCO (or, equivalently, is contained in a saturated PCO). In view of the following example, the answer is in the negative.

EXAMPLE 5. Let $M = \{a, b, \ldots, m\}$ be the set of the first thirteen letters, and let $\Delta = \{acd, bde, cef, dfg, egh, fha, gac, hcb, abi, cij, bjk, ikl, jlm, kma, lab, mbc, hcm, bhm\}$. Obviously, Δ is a PCO. Suppose that $\Delta^* \supset \Delta$ is a saturated PCO. If $abc \in \Delta^*$ then, since $acd \in \Delta^*$, also $bcd \in \Delta^*$. Then, also $cde \in \Delta^*$, and successive applications of transivity finally yield $acb \in \Delta^*$, which contra-

AMS (MOS) subject classifications (1970). Primary 05B99, 06A05, 06A10; Secondary 05C35, 68A20.

Key words and phrases. Cyclic order, partial cyclic order, cyclically ordered triples, Hamiltonian path, transitivity.