GENERALIZED ZETA-FUNCTIONS FOR AXIOM A BASIC SETS

BY D. RUELLE

Communicated October 15, 1975

Let X be a set, $f: X \mapsto X$ a map, $\varphi: X \mapsto C$ a complex-valued function. We write formally

$$D(\varphi) = \exp\left[-\sum_{n=1}^{\infty} \frac{1}{n} \sum_{\xi \in \operatorname{Fix} f^n} \prod_{k=0}^{n-1} \varphi(f^k \xi)\right]$$

Taking φ constant, i.e. replacing φ by $z \in C$, we can interpret 1/D(z) as a zeta-function proved to be rational for Axiom A diffeomorphisms by Guckenheimer and Manning [6].

Similarly, if (f^t) is a flow on X, we write formally

$$d(A) = \prod_{\gamma} \left[1 - \exp \int_{0}^{\lambda(\gamma)} A(f^{t}x_{\gamma}) dt \right]$$

where the product extends over the periodic orbits γ of the flow, $\lambda(\gamma)$ is the prime period of γ and x_{γ} a point of γ .

In this note we indicate analyticity properties of $A \rightarrow D(e^A)$ or $A \rightarrow d(A)$ for diffeomorphisms or flows satisfying Smale's Axiom A, assuming only that A is Hölder continuous. Our results hold in particular for Anosov diffeomorphisms and flows, and when A is C^1 . Stronger properties of meromorphy hold under suitable assumptions of real-analyticity and will be published elsewhere by P. Cartier and the author.

Let Λ be a basic set for a C^1 diffeomorphisms or flow satisfying Smale's Axiom A (see [13]). Choosing a Riemann metric d, and $\alpha \in (0, 1)$ we let C^{α} be the Banach space of real Hölder continuous functions of exponent α , with the norm

$$||A||_{\alpha} = \sup \left\{ |A(x)| + \frac{|A(y) - A(x)|}{(d(x, y))^{\alpha}} : x, y \in \Lambda \text{ and } x \neq y \right\}$$

We denote by $C_{\mathbf{C}}^{\alpha}$ the corresponding space of complex functions.

1. THEOREM. Let the Axiom A diffeomorphism f restricted to the basic set Λ be topologically mixing. We denote by P(A) the (topological) pressure of a real continuous function A on Λ (see [8], [14], [4]). There is a continuous real function R on $C_{\rm C}^{\alpha}$ satisfying

AMS (MOS) subject classifications (1970). Primary 58F20; Secondary 82A05.

Copyright © 1976, American Mathematical Society