EXISTENCE AND UNIQUENESS OF FUNCTIONAL CALCULUS HOMOMORPHISMS

BY WILLIAM R. ZAME¹

Communicated by Chandler Davis, July 19, 1975

The purpose of this note is to announce a uniqueness result for the holomorphic functional calculus in commutative Banach algebras which is much stronger than the usual uniqueness assertion.

Let A be a commutative Banach algebra with unit and let $\mathbf{a} = (a_1, \ldots, a_n)$ be an *n*-tuple of elements of A. Denote by $\sigma(\mathbf{a})$ the joint spectrum of a and by $\mathcal{O}(\sigma(\mathbf{a}))$ the topological algebra of germs of functions holomorphic near $\sigma(\mathbf{a})$. The holomorphic functional calculus, developed by Shilov [6], Arens-Caldero'n [4] and Waelbroeck [7], provides a continuous unital homomorphism $\theta_{\mathbf{a}}$: $\mathcal{O}(\sigma(\mathbf{a})) \rightarrow A$ such that:

(i) $\theta_{\mathbf{a}}(z_i) = a_i$ for i = 1, 2, ..., n,

(ii) $\theta_{\mathbf{a}}(f)^{\mathbf{a}} = f \circ (\hat{a}_1, \dots, \hat{a}_n)$ for each f in $\mathcal{O}(\sigma(a))$,

where \hat{b} denotes the Gelfand transform of an element b of A, acting on ΔA (the maximal ideal space of A). If $\mathbf{a}' = (a_1, \ldots, a_n, a_{n+1}, \ldots, a_{n+m})$ is an n + m-tuple and $\pi: \mathbb{C}^{n+m} \to \mathbb{C}^n$ is the projection, then the homomorphisms θ_a and $\theta_{\mathbf{a}'}$ satisfy the following compatibility condition:

(iii) $\theta_{\mathbf{a}}(f) = \theta_{\mathbf{a}}(f \circ \pi)$ for each f in $\mathcal{O}(\sigma(\mathbf{a}))$.

The usual uniqueness assertion is that the family $\{\theta_a\}$ is unique subject to these requirements. However, we can show that the compatibility condition is redundant, and that the individual homomorphisms are themselves unique.

THEOREM 1. The homomorphism θ_a is the unique continuous unital homomorphism of $O(\sigma(a))$ into A which satisfies conditions (i) and (ii) above.

Theorem 1 follows as an application of a more general existence and uniqueness result (Theorem 2, below). Let U be a domain in \mathbb{C}^n , \widetilde{U} its envelope of holomorphy and $\mathcal{O}(U)$ the Fréchet algebra of holomorphic functions on U. Each holomorphic function f on U has a unique extension to \widetilde{U} , which we denote by \widetilde{f} . Note that each continuous unital homomorphism $\phi: \mathcal{O}(U) \to A$ with $\phi(z_i) = a_i$ for $i = 1, \ldots, n$ has a continuous adjoint $\phi^*: \Delta A \to \widetilde{U}$ such that $\widetilde{z}_i \circ \phi^* = \widehat{a}_i$ for $i = 1, \ldots, n$. The following result shows that this correspondence of ϕ with ϕ^* is bijective.

AMS (MOS) subject classifications (1970). Primary 46J05.

Key words and phrases. Functional calculus, Shilov-Arens-Calderon theorem.

¹Supported in part by National Science Foundation Grant PO 37961-001.